## Direct measurement of cosmic rays above the atmosphere (balloons \& space missions)


http://particle.astro.ru.nl/goto.html?astroinst1920

## Magnetic spectrometer

 momentum measurementparticle in magnetic field $\frac{m v^{2}}{\rho}=e v B \quad$ and $\quad \rho=\frac{p}{e B}$
deflection angle $(\rho \gg L) \quad \theta=\frac{L}{\rho}=\frac{L}{p} e B$
measured momentum $\quad p=e B \rho=e B \frac{L}{\theta}$
$\left|\frac{d p}{d \theta}\right|=e B L \frac{1}{\theta^{2}}=\frac{p}{\theta}$
momentum resolution

$$
\frac{\sigma(p)}{p}=\frac{2 \sigma(x) / h}{e B L} p
$$

$$
\sigma(p) \propto p^{2}
$$

$$
\text { maximum momentum: } \frac{\sigma\left(p_{\max }\right)}{p_{\max }}=1
$$



- Balloon-borne Experiment with a Superconducting Spectrometer
- Measures charge, charge-sign, mass, and energy
- Superconducting magnetic spectrometer: momentum from magnetic rigidity
-Thin solenoidal superconducting magnet Gives very uniform field
-Fully active "JET" and "IDC" drift chambers with 54 points on trajectory, $\sigma<130 \mu \mathrm{~m}$
-MDR: 200 GV BESS; 1400 GV BESS-TeV; 240 GV BESS-Polar
- Time-of-flight system (TOF): velocity and charge
- Silica-aerogel Cherenkov detector (ACC, $n=1.02 / 1.03$ ): background rejection

$$
m=\frac{R Z e}{\gamma \beta c}
$$

- Nine northern latitude flights (1+ days) 1993-2002 and two Antarctic flights in 2004 (8.5 days) and 2007 (24.5 days)
- Including BESS-Polar I 3757 antiprotons reported 0.2-4.2 GeV

|  |  |  |  | 2001-2002 | ;2004, 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BESS-93,94 | BESS-95 | BESS-97,98 | BESS-99,00 | BESS-T | BESS-Polar |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  | No Vessel |
| $\sigma_{\text {TOF }}=300 \mathrm{ps}$ | $\sigma_{\text {ToF }}=110 \mathrm{ps}$ | $\sigma_{\text {tof }}=70 \mathrm{ps}$ | Shower Counter | New ODC's New JET/IDC's | New Mag (ultra thin) |
|  |  | Aerogel <br> $97 \mathrm{n}=1.03$ |  |  |  |
|  |  | ¢ $\overline{\mathrm{p}} 0.2-3.5 \mathrm{GeV}$ | e/ $\mu$ sep. |  |  |
|  |  | $98 \mathrm{n}=1.02$ |  | /He up to 1 TeV |  |
| $\overline{\mathrm{p}} 0.2-0.6 \mathrm{GeV}$ | ¢ 0.2-1.4 GeV | $\overline{\mathrm{p}} 0.2-4.2 \mathrm{GeV}$ | p 0.2-4.2 GeV | p 0.2-4.2 GeV | $\overline{\mathrm{p}} 0.1-4.2 \mathrm{GeV}$ |
| 6,2 | 43 415 | 5,398 668 | , 558 | 147 1,512 | , 7,886 |

## BESS Instrumentation



## Event display with reconstructed Antiproton track is shown.

## Rigidity (MDR:240GV)

Solenoid: Uniform field ( $\phi=1 \mathrm{~m}, \mathrm{~B}=0.8 \mathrm{~T}$ ) Thin material ( $2.4 \mathrm{~g} / \mathrm{cm}^{2}$ )

Drift chamber: Redundant hits

$$
\text { ( } \sigma \sim 150 \mu \mathrm{~m}, 32 \sim 48+4 \text { hits })
$$

## Charge, Velocity

TOF, Chamber: dE/dx measurement

$$
(Z=1,2, \ldots)
$$

TOF: $1 / \beta$ measurement ( $\sigma \sim 1,2 \%$ )

$$
m=Z e R \sqrt{1 / \beta^{2}-1}
$$



## Energy measurement - calorimeter

## electron-photon calorimeter

at high energies (>GeV):
electrons loose energy through Bremsstrahung photons loose energy through pair production --> electromagnetic cascade
longitudinal shower development/energy loss


$$
\frac{d E}{d t}=\text { const } \cdot t^{a} e^{-b t} \quad \begin{aligned}
& t=x / X_{0} \\
& \text { depth in material in units of the radiation length }
\end{aligned}
$$


depth of maximum depends on energy as

$$
t_{\max } \propto \ln \frac{E}{E_{c}}
$$

## Energy measurement - calorimeter

## electromagnetic cascade

lateral extension of the cascade mostly caused by multiple scattering and characterized by Molière radius

$$
R_{m}=\frac{21 \mathrm{MeV}}{E_{c}} X_{0}\left[\frac{\mathrm{~g}}{\mathrm{~cm}^{2}}\right]
$$

## Particle identification - calorimeter

in calorimeters there are different shower responses for electrons and hadrons

Photons

charged \& neutral hadrons


energy deposit for electrons and pions


longitudinal shower development for electrons and pions

energy deposit for muons and electrons ${ }^{123}$


## The PAMELA Mission: Heralding a new era in precision

 cosmic ray physics



A.M. Galper ${ }^{\text {p }}$, U. Giaccari ${ }^{\text {d }}$, A.V. Karelin ${ }^{\text {p }}$, M.D. Kheymits ${ }^{\text {r }}$, S.V. Koldashov ${ }^{\text {r }}$
S. Koldobskiy ${ }^{\text {P }}$, S.Yu. Krut ${ }^{\text {k }}{ }^{\text {A }}{ }^{\text {i }}$, A.N. Kvashnin ${ }^{\text {e }}$, A. Leonov ${ }^{\text {P }}$, V. Malakhov ${ }^{\text {b }}$
L. Marcelli ${ }^{\mathrm{n}}, \mathrm{M}$. Martucci ${ }^{\mathrm{n}, \mathrm{q}}$, A.G. Mayorov ${ }^{\mathrm{p}}$, W. Menn ${ }^{\mathrm{r}}$, V.V. Mikhailov ${ }^{\mathrm{p}}{ }^{\mathrm{p}}$


,B. Ricciarini ${ }^{\text {b,m }}$, L. Rossetto ${ }^{\mathrm{j}, \mathrm{k}}$, R. Sarkar ${ }^{\mathrm{n}}{ }^{\text {, }}$, M. Simon , R. Sparvoli ${ }^{1}$,
S.A. Voronov ${ }^{\text {p }}$, J. Wu ${ }^{\text {j, , , }}$, Y.T. Yurkin ${ }^{\text {p }}$, G. Zampa ${ }^{\text {h }}$, N. Zampa ${ }^{\text {h }}$, V.G. Zverev ${ }^{\text {p }}$

Fig. 2. A picture of the $S 2$ plane of the time of flight system. The sensitive area is $15 \times 18 \mathrm{~cm}^{2}$ segmented into $2 \times 2$ orthogonal bars.


Fig. 3. Left: an overview of the magnetic spectrometer showing the top silicon plane. The magnet cavity has dimensions $13.1 \times 16.1 \mathrm{~cm}^{2}$. The lower part of the magnet canister is covered by a magnetic screen. Right: a silicon plane comprising six silicon strip detectors and front-end electronics.


Fig. 4. Left: The PAMELA electromagnetic calorimeter with the topmost silicon plane visible. The device is $\sim 20 \mathrm{~cm}$ tall and the active silicon layer is $\sim 24 \times 24 \mathrm{~cm}^{2}$ in cross-section. Right: Details of a single calorimeter module comprising two tungsten layers each sandwiched between two silicon detector planes.


Fig. 5. An overview of the anticoincidence system. The CARD system is not shown but the design closely follows that of CAS. The CAS scintillator (on the left) is approximately 40 cm tall and 33 cm wide. The hole in the CAT scintillator (on the right) measures approximately 22 cm by 18 cm .


Fig. 6. Left: the shower tail catcher scintillator S 4 . The scintillator has dimensions $48 \times 48 \mathrm{~cm}^{2}$. Right: The neutron detector equipped (partially in the figure) with ${ }^{3} \mathrm{He}$ proportional counters. The neutron detector covers an area of $60 \times 55 \mathrm{~cm}^{2}$.


Fig. 7. A particle identified as an antiproton in the PAMELA detector. The charge sign and the rigidity are obtained from the information of the magnetic spectrometer. A hadronic shower is visible in the calorimeter; the neutron detector records neutrons from the hadronic cascade.


Fig. 8. A particle identified as a positron in the PAMELA detector. The charge sign and the rigidity are obtained from the information of the magnetic spectrometer. An electromagnetic shower is produced in the calorimeter, no neutrons are detected by the neutron detector.


Fig. 29. Velocity versus rigidity showing the mass separation for $Z=1$ (left) and $Z=2$ (right) particles. The black lines represent the theoretical isotope curves.


Fig. 32. The averaged $\mathrm{dE} / \mathrm{dx}$ information on the middle ToF layer (S2) versus the rigidity obtained by the tracking system. Protons have been previously removed from the sample of events used to produce this figure.

The Alpha Magnetic Spectrometer on the International Space Station
Samuel Ting ${ }^{\text {a }}$


Fig. 1. AMS was delivered and installed on the ISS in May 2011.

## AMS: A TeV precision, multipurpose spectrometer

 TRD Identify $\mathbf{e}^{+}$, $\mathrm{e}^{-}$

Particles and nuclei are defined by their
TOF charge $(Z)$ and energy $(E \sim P)$ Z, E

Silicon Tracker


ECAL
$E$ of $\mathrm{e}^{+}, \mathrm{e}, \mathrm{y}$


Pare measured independently by the Track RICH, TOF and ECAL

Sensitive Search for Antimatter with $\mathrm{He} / \overline{\mathrm{He}}>10^{10}$

a) Minimal material in the detector

So that the detector does not become a source of large angle scattering
b) Repetitive measurements of momentum

To ensure that particles which had large angle scattering are not confused with the signal.

Fig. 4. High sensitivity search for antimatter is a goal of AMS.
Multiple Independent Measurements of the Charge (|Z|)


Sensitive Search for the origin of Dark Matter with p/e ${ }^{+}>10^{6}$

a) Minimal material in the TRD and TOF

So that the detector does not become a source of $\mathrm{e}^{+}$
b) A magnet separates TRD and ECAL so that $\mathrm{e}^{+}$produced in TRD will be swept away and not enter ECAL
In this way the rejection power of TRD and ECAL are independent
c) Matching momentum of 9 tracker planes with ECAL energy measurements

Fig. 6. High sensitivity search for Dark Matter is a goal of AMS.

Fig. 5. Multiple independent measurements of the charge of passing particles.

## Alpha Magnetic Spectrometer - AMS



## Test Beam Results at CERN 2010



Fig. 7. Major results from the AMS test beam calibration at CERN (2010)

## Transition Radiation Detector



## Transition radiation

particles traversing a boundary of media with different dielectric properties --> emission of transition radiation (below Cherenkov threshold)
differential energy spectrum of emitted x-ray photons
$\frac{\mathrm{d}^{2} W_{0}}{\mathrm{~d} \omega \mathrm{~d} \theta}=\frac{2 \alpha \hbar \theta^{3} Z^{2}}{\pi}$

$$
\left|\frac{1}{\gamma^{-2}+\theta^{2}+\xi_{1}^{2}}-\frac{1}{\gamma^{-2}+\theta^{2}+\xi_{2}^{2}}\right|^{2}
$$

$\xi_{i} \equiv \omega_{i} / \omega$
ratio of material's plasma frequency to the emitted photon frequency
$\epsilon_{i} \approx 1-\xi_{i}^{2}$
dielectric constant
emission of photons sharply peaked in forward direction $\quad \theta \approx 1 / \gamma$
total radiation yield (integrated over all angles and frequencies)

$$
W_{0}=\frac{\alpha \hbar Z^{2}}{3} \frac{\left(\omega_{1}-\omega_{2}\right)^{2}}{\omega_{1}+\omega_{2}} \gamma
$$

## Transition radiation

interference effects between
the emission amplitudes of all media boundaries of a radiator

## for N -foil regular stack with constant spacing $\mathbf{l}_{2}$ and foil thickness $l_{1}$

$\frac{\mathrm{d}^{2} W_{N}}{\mathrm{~d} \omega \mathrm{~d} \theta}=\frac{\mathrm{d}^{2} W_{0}}{\mathrm{~d} \omega \mathrm{~d} \theta} 4 \sin ^{2}\left(\frac{l_{1}}{z_{1}}\right) \frac{\sin ^{2}\left[N\left(l_{1} / z_{1}+l_{2} / z_{2}\right)\right]}{\sin ^{2}\left(l_{1} / z_{1}+l_{2} / z_{2}\right)}$.


Fig. 1. Differential TR yield ( $\mathrm{d} W / \mathrm{d} \omega$ ) versus Lorentz factor for several configurations. Shown are the single-interface (smooth line) and approximate multi-foil (oscillating line) energy spectra, as well as the multi-foil spectrum modified by self-absorption processes in the foil (dashed line). The dotted line shows the yield which would be captured in a single 1 cm thick layer of xenon. The characteristic peak emission energy $\omega_{\text {peak }}$ is also indicated. All spectra are normalized to a singleinterface yield. The relevant parameters are $\gamma=2 \times 10^{4}, l_{1}=$ $35 \mu \mathrm{~m}, l_{2}=1000 \mu \mathrm{~m}, \omega_{1}=21.2 \mathrm{eV}$, and $\omega_{2}=0.75 \mathrm{eV}$.


## Transition Radiation Detector

- particle identification (threshold detector)
- energy measurement (Lorentz factor)


## TRD test at CERN




Spaceleb 2 July/August 1985 Spaceshuttle Challenger


Fig. 14. Schematic view of the Spacelab-2 instruments mounted in the orbiter.


## Transition Radiation Array for Cosmic Energetic Rays




## Data Analysis Steps:



## Charge assignment:

Events with clean tracks

Fine trajectory resolution ( $<1 \mathrm{~mm}$ )
from signal distributions in proportional tubes
Correction of scintillator signals
for position and zenith angle

Rejection of interacting particles

## Energy determination:

$3 \mathrm{GeV} / \mathrm{n}$ to $1000 \mathrm{GeV} / \mathrm{n}$ :
use relativistic rise in specific ionization in gas ( $\mathrm{Xe}-\mathrm{CH}_{4}$ mixture)
above $1000 \mathrm{GeV} / \mathrm{n}$ :
strong energy dependence of transition radiation signal, and $\mathrm{dE} / \mathrm{dx}$ signal near saturation

## Measured pulse height distribution in proportional tubes

35 GeV electrons


Measured detector response vs Lorentz factor


Detector Response TRD signal vs $\mathrm{dE} / \mathrm{dx}$ signal
sample of flight data, oxygen nuclei


Measured relative width of the energy deposition


Spatial resolution of track reconstruction


Spatial resolution dominated by (Landau-) fluctuations of energy deposit

## Scintillator Response

Response map of scintillators for one of 12 PMT's

shematic view of scintillator plane


Cosmic-ray charge distrubution measured at instrument

obtained with two layers of scintillation counters ( $200 \times 200 \times 0.5 \mathrm{~cm}^{3}$ )
resolution dominated by spatial uniformity


Fig. 3.-Schematic arrangement (not to scale) of scintillator sheets, wavelength shifter bars, and PMTs.

The Astrophysical Journal, 607:333-341, 2004 May 20
© 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A

A NEW MEASUREMENT OF THE INTENSITIES OF THE HEAVY PRIMARY COSMIC-RAY NUCLEI AROUND $1 \mathrm{TeV} \mathrm{amu}^{-1}$
F. Gahbauer, ${ }^{1}$ G. Hermann, ${ }^{2}$ J. R. Hörandel, ${ }^{3}$ D. Müller, and A. A. Radu ${ }^{4}$ Enrico Fermi Institute, University of Chicago, 933 East 56th Street, Chicago, IL 60637

Received 2003 December 6; accepted 2004 February 3

1. Flight (Testflight)

Ft Sumner/New Mexico
September 1999
Duration: 1 day
Average height: $\sim 40 \mathrm{~km}=3-5 \mathrm{~g} / \mathrm{cm}^{2}$

TRACER Experiment - Mc Murdo, Antarctica
flight: 12. - 26. December $2003 \sim 40 \mathrm{~km}\left(3-5 \mathrm{~g} / \mathrm{cm}^{2}\right)$


## TRACER Experiment



TRACER Experiment - Mc Murdo, Antarctica flight: 12. - 26. December $2003 \sim 40 \mathrm{~km}\left(3-5 \mathrm{~g} / \mathrm{cm}^{2}\right)$


## Cherenkov Detectors

## Cherenkov radiation

charged particles, moving in a medium with refractive index $\boldsymbol{n}$ with
$v>\frac{c}{n}$
emit electromagnetic radiation --> Cherenkov radiation electrons passing through a dielectric at


Charged particles, passing by the atoms in the dielectric, momentarily polarize them.
Once the particle has passed, this polarized state collapses, causing each atom to emit Cerenkov radiation. For slow moving particles, the polarization is perfectly symmetrical, resulting in no electric field at long distances. When the particle is moving very quickly, however, the polarization is no longer perfectly symmetrical.

## Cherenkov radiation

angle between the trajectory of the particle and the emitted photons

$$
\cos \theta_{c}=\frac{c}{n \beta c}=\frac{1}{n \beta}
$$

$\qquad$
threshold for Cherenkov radiation

$$
\beta>\frac{1}{n}
$$

at threshold, the photons are emitted in forward direction the Cherenkov angle increases to a maximum value for $\beta=1$ : $\quad \theta_{c}=\arccos \frac{1}{n}$
threshold energy

$$
\gamma_{t h}=\frac{1}{\sqrt{1-\beta_{t h}^{2}}}=\frac{1}{\sqrt{1-\frac{1}{n^{2}}}} \quad \text { with } \quad \gamma_{t h}=\frac{E_{t h}}{m_{o} c^{2}}
$$

## Cherenkov radiation

number of Cherenkov photons emitted per unit length

$$
\frac{d N}{d x}=2 \pi \alpha z^{2} \int_{\lambda_{1}}^{\lambda_{2}}\left(1-\frac{1}{n^{2} \beta^{2}}\right) \frac{d \lambda}{\lambda^{2}}
$$

$z$ charge of particle $\quad \alpha$ Sommerfeld constant in the wavelength interval $\lambda_{1} \ldots \lambda_{2}$
neglecting dispersion yields

$$
\frac{d N}{d x}=2 \pi \alpha z^{2} \sin ^{2} \theta_{c} \frac{\lambda_{2}-\lambda_{1}}{\lambda_{1} \lambda_{2}}
$$

which gives for a singly charged particle ( $z=1$ ) in the wavelength range 400 to $\mathbf{7 0 0 ~ n m}$

$$
\frac{d N}{d x}=490 \sin ^{2} \theta_{c} \quad\left[\mathrm{~cm}^{-1}\right]
$$

## Cherenkov detector

- particle identification threshold detector

$$
\gamma_{t h}=\frac{1}{\sqrt{1-\frac{1}{n^{2}}}}=\frac{E_{t h}}{m_{o} c^{2}}
$$

select material with appropriate $n$ --> light particles radiate

- measurement of velocity (kinetic energy)

$$
\cos \theta_{c}=\frac{c}{n \beta c}=\frac{1}{n \beta}
$$

ring imaging Cherenkov detector (RICH)


## Human Eye as Cherenkov detector - SilEye-2 experiment



Figure 2. Scheme of the SilEye-2 silicon detector: six 16 strip silicon layers glued in pairs with strip orthogonally aligned form three planes (the two layers of the first plane are drawn separately). The position of the eye bulb is also shown.



Figure 1. Photo of the SilEye-2 helmet and detector case: 1. Head Mounting. 2. Eye mask with internal LEDs. 3. Detector Box. 4. Connection cable for the LEDs used for dark adaptation tests



The energy spectrum of cosmic-ray protons and helium near 100 GeV
E. Diehl ${ }^{1}$, D. Ellithorpe, D. Müller, S.P. Swordy *

Department of Physics, Enrico Fermi Institute, University of Chicago, 5640 Ellis Avenue, Chicago, IL 60637-1433, USA Received 15 February 2002; accepted 2 May 2002
scintillator: $1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$ NE110 plastic scintillator, 1 cm thick
viewed by twelve 12.5 cm diameter PMTs
hodoscope filled with argon/methane 95:5


Fig. 2. Schematic cross-section view of hodoscope operation.

Fig. 1. Schematic cross-section of the instrument.

## Multi-Wire Proportional Chamber


spatial resolution $\sigma(x)=\frac{d}{\sqrt{12}}$
ionization liberates electrons --> acceleration in electric field energy gain between to electron collisions

$$
\Delta E_{k i n}=-e \int_{r_{1}}^{r_{2}} E(r) d r
$$



2

d

electric field
if energy gain is larger than ionization energy
--> development of electron avalanche

$$
\text { voltage signal } \Delta U=-\frac{e N}{C} A \begin{aligned}
& \boldsymbol{A} \text { gas amplification factor } \\
& \boldsymbol{N} \text { charge carrier pairs }
\end{aligned}
$$



The energy spectrum of cosmic-ray protons and helium near 100 GeV
E. Diehl ${ }^{1}$, D. Ellithorpe, D. Müller, S.P. Swordy *

Department of Physics, Enrico Fermi Institute, University of Chicago, 5640 Ellis Avenue, Chicago, IL 60637-1433, USA Received 15 February 2002; accepted 2 May 2002
photo detector:
six separate MWPCs filled with ethane
to ensure the transmission of the UV Cherenkov light, fused silica is used for the entrance windows
photosensitivity is achieved with TMAE
(tetrakis(dimethylamine)ethylene)
low ionization threshold 5.36 eV
active wavelength region 160-220 nm


Fig. 3. Schematic cross-section of the photon detecting chamber.
Astroparticle Physics
Astroparticle Physics 18 (2003) 487-500


Fig. 4. Photon chamber TMAE/ethane gas system and control.

Fig. 1. Schematic cross-section of the instrument.


Fig. 1. Schematic cross-section of the instrument.

The energy spectrum of cosmic-ray protons and helium near 100 GeV
E. Diehl ${ }^{1}$, D. Ellithorpe, D. Müller, S.P. Swordy *

Department of Physics, Enrico Fermi Institute, University of Chicago, 5640 Ellis Avenue, Chicago, IL 60637-1433, USA Received 15 February 2002; accepted 2 May 2002


Fig. 6. A single event in the photon detecting chambers. The sensitive areas of the six chambers are shown as rectangles. Detector pads hit are shown as small black squares. The incoming particle produced a ring image of four clusters in the bottom right, the circle shows the fitted ring. The cross is the ring center predicted from the track fit, the star is the fitted center from the clusters detected. At the top left the incoming particle passed through the detector, leaving a cluster of hits. Other pads shown as hits are background.

## Cherenkov Detectors

 forparticle detection in air showers

## Pierre Auger Observatory - Water Cherenkov Detector to measure secondary particles in air showers



Fig. 3. A schematic view of a surface detector station in the field, showing its main components.


Fig. 4. Mechanical housing for the SD PMT. Top to bottom: outer plastic housing (fez), insulating lug, PMT, flange, and UV-transparent window.
expected to be available over $99 \%$ of the time. Batteries are charged through a commercial charge controller, which is epoxy encapsulated and has robust surge protection. The electronics

12000 I ultra pure water
three 9" diameter PMTs - Photonis XP1805/D1

## Pierre Auger Observatory - Water Cherenkov Detector to measure secondary particles in air showers

## wireless communication system



Fig. 12. One of the five communications towers: the one shown is deployed at the Los Leones site; see Fig. 11.

Fig. 11. Conceptual schematic of the overall radio telecommunications system for the Pierre Auger Observatory.

## Pierre Auger Observatory - Water Cherenkov Detector to measure secondary particles in air showers

## trigger system to identify extensive air showers



Fig. 15. Schematics of the hierarchy of the trigger system of the Auger surface detector.

## Pierre Auger Observatory - Water Cherenkov Detector to measure secondary particles in air showers

The Pierre Auger Collaboration / Nuclear Instruments and Methods in Physics Research A 798 (2015) 172-213


Fig. 17. Event 13357690: a typical vertical event of about $3 \times 10^{19} \mathrm{eV}$. Top left: The array seen from above with the 8 triggered stations. Top right: The fit to the lateral distribution function (LDF) for this shower of zenith angle $28^{\circ}$. Bottom: The FADC traces from 2 detectors at distances of 650 and 1780 m from the shower core. The signal sizes are in units of VEM.

