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The cvoluton of the number and cncrgy spectra of photons and clectrons in an air
shocr initiated vmglc electron or photon incident at the top of the atmosphere
is poverned hy the coupled equations (5.25 and 5.26) introduced earlier. In Chap-
ter 5 we discussed solutions subject to power-law boundary conditions. For an air

shower, (he sume equations have 10 be solved subject Lo an appropriate §-function
boundary condition at t = 0. The standard approach 1s a Montc Carlo computer
code. such as GCANT [191] or EGS [192]. To g1ve insight into the basic structure
of electromagnetic cascades, as well as for historical perspective, we devote this
chapter to a discussion of approximate formulas thal conlain the essential physics
and sel the stage [or the discussion ol more complicated hadronie cascades 1n the
ncxt chapter.
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Thc nrst two terms on thc rlght 51dc ot Eq ’6 must be combined (using the
relation 5.19) to remove the infrared divergence at v — 0.
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A Matthews Heitler Model — Electromagnetic Cascades
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A Matthews Heitler Model — Electromagnetic
Cascades
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15.1.2 General form of solulion

In gcncml Lhe parlicle content ol any wir shower (number ol parucles ol c.u.h

M i e

cEeCqu as a function of E a'nd X ) is o siven hz the solution of the cougled cas-

Lios o

dCCC]UElth\ i ) Sllb]LCt to tc dclta runtlon boundar condltlon (Eq. ° ‘4 ) If

only of the = F, et us call rh|<'. dlmenqmrilesc. function

{ },(,,, X“' = E N, (E,. E.), X) , (15.4)
The yield function, 7;. gives thc numbcr of partlcles of type i per logarithmic
interval ol [ractional energy. The yield depends only on the ratio ol the particle
energy, E;, to the total energy, Ey, of the air shower. This result holds only to the

extent that scaling is valid and only when decay and continuous energy loss can be

neglected. It 1s applonmately valid tonhlgh ener gvhach ons and tor eleutmns and_

photons wnth 1: = 1: n au showcls
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5.1 Basic equation and boundary conditions
The lincar development of a cascade of particles in the atmosphere can be described
by a system of equations of the form

| AN((E..X)  Ni{E,X) N(E,X)
| dX B A d; }
J 90 § _ R I ;,
+T‘ [ F:ll(ElsEJv/’ NJ‘\E]. X) d"}
e E I; lj !

j=i- ,,
Here. N;(E;, X)dE, is the flux of particles of type 7 at slant depth X in the atmo-
sphere with encrgies in the interval E to £ + dE. Note that X is mcasurcd from the
top of the atmosphere downward along the dircction of the particle that initiated the
cascade, as shown in Figure 5.1. The probability that a particle of type j interacts
in traversing an infinitesimal element of the atmosphere is dX /A (L), where 4;
is the interaction length in air of particles of type j. Similarly, dX/d;(E;) is the
probability that a particle of type j decays in dX. All three quantities X, A; and d;
must be expressed in consistent units, and we use g/cm”. Energy loss by ionization
1s not included 1n Eqg. 5.1 because 1t 1s nol important for hadrons in the almosphere

or [or hgh-energy eleclrons.
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5.2 Boundary t.ondllwm

W will nced solutions of thu cascadc cquation 5.1 subject to two physically
important boundary conditions that corrcspond to two quitc diffcrent types of
cxperiments. The boundary conditions arc

, . dN . nuclcons
N(E.0)=Ny(E) = ~17E 2 ,
) ' ' dE cm-srs GeV/ A

(5.8)

and

(5.9)

where A here is the mass number of an incident nucleus. Eq 5.2 is relevant for
a detectar that simply measures the rate at which particles of a given tyvpe pass
through. The explicil power law approximation is based on dala with primary
enerey less than a TeV, but it is useful as a guide up to a PeV. I'q. 5.9 is the bound-
ary condition rclevant for an air shower cxperiment that traces the development
of a cascade through the atmosphcre. An cxamplc 1s an array of detcetors on the
ground with a fast-timing capability that can be triggered to measure the coincident.
cxlended shower [ront mmtiated at the top of the atmosphere by a single particle.
In the case of a ground array, the primary parlicle has o have sullicient energy (o
give a measurable cascade al the surface of the Earth., Cherenkov and [luorescence
delectors can trace the development of showers through the atmosphere.
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The [unction Fj;(E;, E;) in Eq. 5.1 is the dimensionless parlle]e yield that [ol-
mmmm

lows from the inclusive cross section (integrated over transverse momentum) for

a particle of energy E 1o collide with an air nucleus and produce an outgoing

particle i with encrgy E; < E;. In gcncral we dLnne

where dn, IS the number of pamcleq of type i produced on average in the energy
hin dF; around F; per collision of an incident particle of type j. All quantities
in Eq. 5.4 arc defincd in the lab system. The rclation to center-of-mass quantitics
can be derived from the definitions in Table 4.1. I'rom Lqg. 4.15 1t follows that for
energetic secondaries, 1.¢. those with £, » m7 .

E./E, = x; ~ X", (5.5)

(We alwavs define CMS as a projectile on a target nucleon even when that nucleon

PP

is bound in a nucleus, because nuclear blndlng energies will usually be much lower

than energies ol mterest in cosmic ray problems we consider.)
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It is interesting to express the differential flux, V; |, that results from a

LX)

spectrum of primary particles in terms oi J.Itis

Note th 311]alty btwee the role of a whole \,ascade 1repreented here by F)

and the role of individual interactions in the spectrum weighted moments given

AyF,q '5.48. Themterl in Eq. 5.6 is spectrum weighted moment of a whole

cascadc. In fact, in the late 1940 it was not clcar experimentally whether clementary
multiplc production occurs at all or whether cvents with more than onc created pion
required interactions of the projectile with several separate target nucleons inside
a nucleus. This is the question of “multiple” versus “plural” production discussed
by Heitler and others in Volume 21 of Reviews of Modern Physics, 1949,
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In general, the s

alr — 1,

ctrum-weighted moments of the inclusive cross sections J

!
Zji = [ ()7 Fyleg) ey, (5.48)

Jiu
Jo |

determine the uncorrelated fluxes of energetic particles in the atmosphere | 197,
|98]. Tor y — 1, it follows from Cq. 5.4 that Z;;(1) is simply the average fraction
of the interaction energy that goes into particles of type ¢ in interactions of particles
of type ;. For > | the contribution to the moment from v; — 0 vanishes. Thus,
for a steep primary spectrum, the uncorrelated fluxes depend on the behavior of
the inclusive cross sections only in the forward fragmentation region (x* = 0 in
Egs. 4.15 and 5.5). This is why the ;¢! /2 ratio remains large and greater than 1,
which we will discuss in Chapter 6. It is also why Approximation A remains useful
[or uncorrelated Muxces of encrgetice parhicles. because hadromie scaling (Eg. 5.45)
is more nearly valid in the fragmentation regions than elsewhere.

For later reference, we give here a table (Table 5.2) of spectrum-weighted
moments.” This table is analogous to the Table 5.1 for electrons and photons. The
Z-factors from Ref. [199] are tabulated for y — I,y = 1.7 and ¥ — 2.0. For
comparison, we also show the Z-tactors at ¥ = 1.7 for the first edition of this
book [200] and for & new version of Sibyll [155]. Since the primary speetrum 1s
not a perfect power-law over the whole energy region, it is also important to see
how the Z-factors depend on spectral index. This is shown in Figure 5.2 for inte-
gral spectral indexes between y = | (momentum fraction) and y = 2.4 (above the

knee).
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15.2 Analytic solutions in cascade theory

The coupled cascade eqtons for photons (Eq. 5.20) and e]ectrom (Eq 21)
are given 1n'(“hvapter 'Theyde end on 'amcleenero “and distance expressed
as 1 = X(g/em?)/X. For air the radlatmn length is Xo ~ 37 g/cm Analytic

forms for solutions of the electromagnetic cascade equations subject to power law
boundary conditions were presented in Chapter 5. Here we discuss the relation of

Lhc powcr-].tw [orms LU the (,Ol'l'c:pr[lleU boluuonm L}mmc cqu..tuunb bub_]ccl
) G "unctlon boundary conditions. - | |

« lAheprdl for paramtlt' of air showers (hadronic as well as electro-
magnetic) 1s the work on electromagnetic cascades summarized in the 1941 review
by Rossi & Greisen [194]. Since the details arc available in their paper and in
Rossi’s 1952 book [498], we will outline the results here as bricfly as possible con-
sistent with motivating thc forms of thc parametrizations and summarizing their

essential features. The same approach can be used for hadronic air showers, as we
note in the following chapter.
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5.4,1 Cas‘cade ¢ ualiurns_

The coupled cquatlons for clcctromagnctlc cascadcs are an instance of Liq. 5.1.

They are —
(W, t) © o dn.,
—_ + T(E ] (5.20)
Apair W
dr w(E,t) e dres,e |, A
_—=— - + (L, t) dr (5.21)
dt Abrems E | dEdt

where y (W, z)dW is the number of photons in dW at depth 7 and 7 (E, r)dE is
the number of e~ in dE at depth 7. For energies that are large compared to the
critical energy, collisional losses and Coulomb scattering can be neglected and the
scaling functions 5.13 and 5.16 can be used. This is Approximation A.

Jorg R. Horandel, APP 2018/19
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The starting point is to show that the Mellin transforms of y (W, 7) and 7 (E, 7)
satisfy the same paramctric cquations (5.30,5.31) as the cocfficients f, (1) and
fx (1) that enter thMWWW conditions derived in Chap-
ter 5. This is done by taking the Mellin transform of [gs. 5.25 and 5.26. The Mellin

TR

lranbfurm of u unclwril" _W ) idenc \

tn

~J

t Mp(s) = [ WSF(W)dW. } (15.7)
| r ,

Transforming the last tel m of bq 3.25, 5, for example mvolves calculating

"‘

o0 d ) ‘V ' . PR . \ :
| w f WY e)dw = J Ao ()0 M (5,1) = C(5)M, (5, ).
0 o U U - 0

Given the correspondence M (s,7) ~ fr(r) and M, (s,7) ~ f,(¢), the same
analysis in terms of elementary solutions of the form Mis, f)ocexp(Af) as in
Egs. 5.32 (0 5.35 applies. (C(s) and other relevant [lunctions are given in Table 5.1.)
For a caqLade generated by a \mgle phoron of energy W; the houndary con-

,_ ) ’S n M (i O \\hl(‘h follow from

ditions arc \.
7 (0) = 5(W — (0) =
conditons are , =0 an
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Table 5.1 gives some values lor the spectrum-weighted moments and other
parametcrs of clectromagnetic cascade theory in the conventional notation of [ 194].
In terms ol these delintions, Egs. 5.25 and 5.29 may be rewrillen as

d . .
[E + UO] f;,-(‘!:' o C(A’) f"l (’) =0 (5.30)
and
d .
[5 v A(sI'J fr{t) = B(s) fy(1) = 0. (5-31)

By solving Eq. 5.30 for f, and substituting the result into Eq. 5.31 we gct a sccond
order differential equation for f,. Similarly, substituting f, from Eq. 5.31 into
Eq. 5.30, we get the equation for f,. Both f;(7) and f, (r) satisfy the same second
order differential equation.

'+ (A +ou)f ~ (Aoy — BC)f = 0 (5.32)

which has elementary solutions of the form fo.exp(Af), where A(s) satisfies the
quadratic equation obtained by substitution of the exponential form into Eq. 5.32,

A — (A+o00)h + (Aop — BC) = 0. (5.33)

Jorg R. Horandel, APP 2018/19
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. With the

identilicutions,
pieor g Yy (5.22)
dwdt " E o
rid"'IV' e e E) (5.23)
dEdt W o
and
dn._,,. Ny E .
! — )‘l —_ y 5.24
aear ~ M) >-22)
the cascade cquatlons .20 and 5.21 can be written in scalmg form:
4 v Tw & B
y SR S J T{—,1)o(v)— 1(5.25) |
dt )"F‘ail' Y U - v i :,
éand
l Lk ! ok lie
oty I 7 d(e) +2' (L 0 () 1(5.26)
dl ) brems 0 l — v I —u Jo 7 u

Thc nrst two terms on thc rlght 51dc ot Eq ’6 muﬂt bc combmcd (usmg the
relation 5.19) to remove the infrared divergence at v — 0.
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The air shower solutions arc thcn obtained hy inverting the Mcllin transforms,

| { 0+ ,
y(W, 1) = J WU £ (s, 1)ds, (15.9)
270 )ity
for photons, with a similar expression for electrons. Solutions subject to d-function
boundary conditions arc thus convolutions of the clementary solutions for power
law boundary conditions.

It is only in the mversion of the Mellin transforms that approximations are
n.unrc '\ otal a‘nal tc QO]UI’IQ “The prmua’ln coneqrﬂwfwcvamfnvg
Eq. 15.9 by the saddle point method. To simplify the formulas and to motivate
the standard parametrizations it 1s also useful to make some numerical approxima-
tions to the Mellin transform functions. The function A, (s) is positive for s < 1
and negative for s > 1. An approximation that is good to better than 2% for
0.5<s < 2is - -

—(s — 1 — 3lIns). |
5 (s ns)

(15.10)

- ()

The other root of Eq. 5.33 (A,(s)) is always negative and larger in magnitude than
A1(s5), so that only the term with A is important for z > 1.
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A~. 5| euﬁc exam )Ieﬁ we conc.ldel the solurmns fnr elecn ons )qu mcltmnc for a
sm

an mcndent 7]]0"0!1 IS

e B(s)
L0 S s R ). A

From I-.q '5.306 the 1I'||| tmtorm m

The corresponding cxpression lor an incidenlt eleetron is
B B R e BN S T e
o PR op + Ap(5)

£, 1) &

(Fn)" exp|r(s)z]. (15.12)
Arls) — dals) ' ' '

The inverse transform of f»" : (5, ], for example. gives

v df | [ B(s) e
7 VHE, E = ] { 3. (15.13)

L 2mi J_ivegy L\S[A1(S) — Aais)] ]

~{Wa\' -
¥ V'S'( FJ) exp|ri(s)t]ds.

which can be rewritten as

o ) 1 won -f.;} - " i
JZ“J'[F.',T.)d}'T:—,_,J s — (15.14)
E 2mi vS|A(s) lg[&'_}]f :

—iL+Ny

. 1
< exp[Ai ()0 + sy + 5 Ins]ds.

Soiors i

Iere y = l( Fo/ T ' | ( quantity called "'leth”i the context of radiation shield-
ing). The factors in curly hrackets have heen arranged to cancel a 1/4/s behavior

of A1(s) — a»x(s) at small 5. The rapidly varving part of the s-dependence in the
integrand 1s thus all in the areument of the exponenl.

Jorg R. Horandel, APP 2018/19
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The roots of Ey. 5.23 are

2h1(s) = —|Al) + ag] + {[A() —(I.)]"" + 43(3‘)(7{:.\:)}5 (5.34)

and
N . . 3 ;o | -
2hp(8) = —[A) + oy — {[Al) —on]” + 4B(5)C(s5)}2. (5.35)

The solutions, f, (f) and f,(t], are linear combinations of the elementary solu-
tions exp|Xyf| and exp|Aiar| appropriate for the boundarv conditions at injection.
For example, lor a pnwu-lw distribution of m_p..;.h.d phnlnns \wlh 4 WO =
fy (l’) W —s+1) 'l hn,l()p )flh lnu\phc | | ‘ I

(5.36)

and

Jy (0]

gA+Anw"—(A—MV“}QJ (5.37)

)\.|—A.7

Thus, [or a>pt:c.lrum0f m]ecld pllulon~w1lh1nlc:gral bpeclralmdcx v and no
injected electrons. the dillerential spectrum ol photons plus electrons an
at depth r 1s

o PRI B - SRR foe o IR BIR LIRS . e e

-— () : o . o
u%EL——%LTf*””uA+B+MwW—ﬂA—B+hM”L 4
! = A2 ,,

| pusilrons
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The saddle point approximation for the integral in Eq. 15.14 consists of expand-

§ is the solution of

L4y + Lins] = 0
&[-1(-")1+\}-‘+; ny] = 0.

ol

The slowly varying part of the integrand in curly brackets is approximated by
its valuc at s = §. This lcaves a Gaussian intcgral which can be cvaluated by
integrating along the contour through the saddle point at 5.

T'he same procedure can be carned out to [ind the corresponding approximation
for electrons generated by an incident electron and for photons in showers of either
type. Integral spectra also have the same form. (I'rom Lq. 15.13 it is apparent that
integral spectra differ from the corresponding differential spectra by an extra factor
ol 1/s in the integrand.) In general, the integral 1o be approximated is ol the [orm

~ l TEY SIS _ o
1(1,3) = — [ ds {F(s)lexp|i,(s)f + sy —nlns], (15.15)
270 ) o 45
where n is given in Table 15.1. The condition for the location of the cxtremum is
. n
MEr+y - - = 0. (15.16)
5

Jorg R. Horandel, APP 2018/19
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Table 15 1 Quantltles m the Rossz & Grezsen

n F(s)
et + e~ fromy -3 ﬁ[lll(gs()sl"Z(s)]
et + e frome® 0 Alo(os*)bi;»(zs()s)
y from y 0 - kno(os-;izl(zs()s)
y from e* +3 A.gii‘g;)@)
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Expanding the arcument of the imegrand about 5 gives
T(t,5) =~ F(5) exp|2(5)f + §y — nIn§]

I A 3 H‘—H"
X f ds exp| (&) ()t + n/F° |

2mi Jora-s 2
F(3) exp|a (¥t + Ty — alni| o
R _ - . (15.17)
VAT + s V2T

The depth of maximum, s, vecurs dpprmumdu,l» whtn lh\ erumtnl of lhu
pronnnu.{ 18 & INAXIMUI, T : e .

4 (s | ]1 ds + 2q(8) Jals) 0 (15,18
— s —=sv—=—nlns|y — + 254(y) = 2(s) = 0. 5.
dc‘m | A J i 1y i [ )

(Tn this equation and below, the har aver s is understond.) The factor in sguare
brackels vanishes by Ey. 1516, and 2 (5) = 0 for s = 1. It therelore follows from
Eq. 1516 thal Ty = —(y—n)/27(1]. With he approximation 15,10, 21(1) = —1
and

(15.19)

n(imcgral) = n(diﬂ’crential) — 1.

NolL thal maximum 1s rwt.hulonc-hdll mdldlwn lt.nulh souner lor b}IOW(.l'b

mtlated by eletrn‘ tha tn photn mntaje <h0\'. re -

g R. Hérandel, APP 2018/19
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‘The parameter s, related to ¢ and y by Liq. 15.16, is called the age parameter.
. FENCAI S, | - .
Since T(1)x exp|ay(s)1]. the number of shower articles in a given energy rancm

increases with tlt.pL]’l for s < | |71 when 2 l(‘ \p()\llrl\’k..) rcaches a maxi-
mum when 8 — |, and declines for s > | (when Ay e] i3 nwatwcn With the
approximation ol Eg. 15 10, - o
2n + 3t
§ = —, (15.20)
!+ 2y |
and
2(s) ~ 1.5/5% (15.21)

From FEgs. 1514 and 1517 one can sce that in genceral the energy spectrum of

particles in a shower will he of the form

encray. amclc bccnmc rar; asrhg Qhowcr dcvdo& At mammum s = and rh;

7!', I

\[)LLVlI VI\ ~ F~2. (N(l (hat because § docs depend on vy, these stalements dpp1y

only for 1 hrmlcd runges of energy.)
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Apprommtnons like Liq. 15.17 are used with s as a parameter. l'or each value
of s one finds the uesn'lg t from Eq. 15.16. The value of Z(z(s), s) is then
plotted at this value of ¢t. With the help of Egs. 15.10 and 15.20, the exponent in
Eq. 15.17 can be written in the following conventional form:

, 3 |
cxplii(s)t + sy — nins| = exp[n(l —Ins) 4+ 2(1 — ~Ins)]. (15.23)

et

Explicitly, for example for the integral spectra,

(1— 21
)"'791(.9!—)7(5" Vi1 ol = sl

(1524 |

T PSSP, T e tad 7,__ - P—

B(s) Vi e 3
- / — cxpltil — =Ins

(V2m) 2 /5[ (s) = Aa(s)] /1.5r + 0.5 plr 2 )]

- (1525) |
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Al muimum T = ln(E)/E) — and.s = 1 $0°

P15 E,t) S ¢} (15.26)
| -\/]m\Eo/E) ~033 F
and
E ‘ 0.14 C
V(> E1) ~ : (15.27)

VIn(Fo/E) — 025 E

w—rw-—n

{ Note the sumlantyot the tormulas for depth of maximum (qu 5.1 19) and si1ze at |

kmaxunum (Egs. 15.26 and 15.27) here as compared with those obtained above with | |
I the simplc Heitler branching model (Fgs. 15.2 and 15.1).
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15.3 '\pproumatlons fortotalnumherot partlcles

What 1s measured by a scintillator that samplcs an air showcr front 1s the signal
praduccd by all the clectrons and positrons incident on the scintillator plus the sig-
nul produced by photons that convert in the scintillator.” One would therelore like
a formula for the total number of electrons and positrons down to. say, 20 MeV.
Encrey loss and Coulomb scattcring must be taken into account, and Approxima-
tion A 1s no longer adequate. The conventional [orm used for the total number ol
ele-. trons 1n a photon mmatod cror enry E 1 Grisn 1956) [9“

where By = In(Ey/E,) and S, 1 and y = 60 are rc]alcd bv Eq. 1520 withn = Q.
This simple expression is similar in form to the Approximation A solutions. but
a5 2 depth of mmmum 'tht epedqn the \,rnca energy rarhet n e'nerg 0
VLht: pholon, - ) | | o

e e o
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The approximation 15.28 is plotted in Figure 15.2 to illustrate how showers
evolve over a wide range of primary energy. Shower maximum occurs tor s = 1.

Therelore [rom Eq. 15.20 with n = O,

(15.29)

and s
0.31

;V(dm) _
»/'ln( Eo/E;

= Y Y max

Analogous relations for charged particles in hadron-induced showers will be
discussed in the following chapter.

[igure 15.2 shows how Lq. 15.28 for electromagnetic cascades evolves over a
wide runge ol primary photon energy. Sumilar relations among shower age, depth ol
maximum and sizc at maximum can be applicd in the analysis of showers initiated
by primary cosmic rays.
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Figure 15.2 Shower size as a function of slant de

pth for photon-initiated show-

ers in half-decade intervals of primary energy from 316 GeV (lowest curve) to
107 GeV (highest curve). The dashed lines trace the locus of size at specific

shower ages across the same range of energies.
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15.4 Fluctuations

For u given primary energy, [luctuations in the size of a shower meusured al a
particular depth in the atmosphere arise both trom fluctuations in starting point
and from fluctuations in the way the shower develops. An incident photon interacts
with probﬁbi]ify dP /P = orodf 50 P(n ) ; oD cxp[ aotl] is thc dlStllbUthll ot

Since N (r)=xexp[Ai(s)f]. a measure of the corresponding Hluctuation in In NV is
" z = = z s e RIS TEE

| 9 .
SInN ~ ay(v)dl ~ H(\ — 1 — 3Iny).

it St 8 Ak O NG e

Fluctuatlons in ShOWCl size are thus 100rt10na1 to NV and ar smallest near

5 #- .4 and 57\.' ’; 0 4N. When d‘cvclt‘ruan ar«. mldbd the
‘ averall fluctuations arc somewhat larecr. In summary, fluctuations in a sample of
! showers of the same energy observed al the same slunt deplh are approximately
log-normal. reflecting the multiplicative character of the cascade process. This is
clearly a general property of the branching process that will also hold for hadron-
initiated showers. l'luctuations 1n proton-initiated showers may be larger because
| the interaction lcngths for protons and mesons in the shower are larger than the
electromagnetic radiation length.
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15.5 Lateral spread

To obtain the lateral distribution of the particles in a shower front, it i1s necessary
to mclude not only the opcnulg ang]es n pau pr oduutlon and bremsstrahlung, but
also multiple Coulomb scattcring. In act it is the latter that determincs the charac-
teristic size of the shower front. The lateral spread of an electromagnetic shower is
determined by the Mollelc unit, /‘ the natural unit of ltlal cad due to Coulomb
Qattcrlnrp For multl nlmh Qcacrmg(thlmua I967) [500] T

(15.23)

(15.34)

C

which is 78 m at sea level." For higher—eergy particles the characteristic spread,
Rg ~ ri E./E, 1s smaller.
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For calculations ol showers in three dimensions il 1s necessary 1o solve cqualions
forw(E, x. v, 8, By, [). Approximale solutions oblained by Kamata & Nishimura
(1938) [501] and by Greisen (1956) [499] are compared in the article in [landbuch
der Phvsik by Nishimura (1967) [500]. Greisen's form of the lateral distribution of
electrons is known as the NKG formula, : -

(15.35)

m

(15.36)

where N, ) is the total number of particles in the shower at ¢ radiation lengths.
The normalization is defined so that
L
2r J af(x)dx = 1. (15.37)
(]

The correlation between shower age and shape ol the lateral distribution implicd
by Eq. 15.35 has been used o correlate a litled value ol's lor a shower with ils stage
ol development. This is problematic since real showers have hadronie cores that
continually fecd the clectromagnetic component through 7% — 2. In addition,
Monte Carlo simulations ol clectromagnetic cascades in air ind steeper lateral
distributions than the NKG distribution [502] and [503]. Nevertheless, the general

f_orm of the NKG tunctlon. or modmcatlona of 1t havc pro»ed usem
"obser 1 sho | ’ ' '
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Fig. 2. Lateral distributions of electrons above a 5 MeV kinetic
energy for zenith angles below 18°. The lines show NKG
functions of fixed age parameter s = 1.65 but varying scale ra-
dius 7. (see the text).



lecture 5
Extensive air showers

Gacsser chapten 16

16 [ixtensive air showers

16.1 DBasic features of air showers

16.2  The Heitler Matthews splitting model

16.3  Muons in air showers

16.4  Nuclei and the superposition model
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Extensive Air Shower

Proton 1015 eV: oP
on ground
106 particles \
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16.1 Basic features of air showers

Al t:d(.h h.ulmnm mlemulum lwhllv more lh.m a thrd ()flhccncru e mlu lhe

t:leurumdync:m uvmpnncnl blnwrnc)\l hadmm r¢ mLcr.ul musl nf lheprlmar

'mo»st of the shower energv I cventual]) dl\‘lpatcd by 1011lzatlon losses of the clec-
(rons and pObllI‘OIlb It 18 correct llh‘ml\ ol llwaunob hrcasq Lalorltllc;lt:_r o be

(16.1)

where N (X) is the number cheaic]sin the shower at depth X (measured
along the shower axis) and o is the energy loss per unit path length in the atmo-
sphere averaged over all electron Energies (a ~ 2 SMc\ (gmni )) In practice the

track length itegral must be extrapolated bcvond thc slant depth at the ground to
account for cnergy remaining in the shower when it reaches the surface.
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Energy measurement - calorimeter

hadron calorimeter

longitudinal shower development

scintillation counters

beam

S. Plewnia et al. | Nuclear Instruments and Methods in Physics Research A 566 (2006) 422432
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Fig. 2. Schematic view of the sampling calorimeter.
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Fig. 13. Measured energy deposition as function of depth in the calorimeter for hadrons with energies from 30 to 350 GeV. The lines represent fits
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Energy measurement - calorimeter
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Fig. 2. Schematic view of the sampling calorimeter.
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Energy measurement - calorimeter
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Fig. 16. Energy deposition as function of depth in the calorimeter for
electrons. Shown are measurements (filled symbols) and results of
simulations (open symbols). The lines represent fits to the measurements
according to Eq. (7).
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Fig. 17. Energy sum in the calorimeter as function of the incident hadron
energy. The energy in each layer is weighted with the amount of absorber
in front of the layer.

Jérg R. Hérandel, APP 2018/19 39



The number ol Tow-energy (1 — I()Gc\') muons increases as the shower devel-
ops thcn rcachcs a platcau bccausc muons rarcly interact. The attenuation of the
muon component due to muon decay and energy loss 15 relatively slow. In contrast,

the number ol electrons and positrons declines rapidly afler maximum because
radiation and pair production subdivides the energy down to the critical energy
(E. ~ 80 MeV —see 5.3) after which electrons lose their remaining energy to 1on-
ization quickly. These basic features of longitudinal development of showers are
illustrated in the right panel of IFigure 16.1.

'T'he left panel of Figure 16.1 shows the lateral distributions of the different com-
ponents. Secondary hadrons are produ\,e at atvplca] almoﬁt ener gv-mdcpcndent
tran\crs‘octum '_ 33' adln t‘ a lr € n le of Jow-

nror hadrons élqt»eto‘ theshver aus lncontrt most of the EM pn,ls

r nearly par allel to thc hadl onic core.

) cattering.' Thus the
lateral distribution of muons 1s mder than that of' bM parucle:. because they are

are in the'swdcs 111t atcd yhgl cncl oy I

Thmrlacra] ‘spread omcs amlv orri multlplc Co]ob'

mamlv produ»cd in the dccay of low -cnergy pions [SL- . 506]. For thc samc rca-
son, hadronic interactions at low energy ( E < 200 GeV) largely determine the total
muon yield [507, 508]. In round numbers the muons make up of order ~ 10% ot
the charged partnc]cs In the E componcnt thcyvs ounumbcrev e

NI Iges

fdc.lnr uf ~ I()

Jérg R. Hérandel, APP 2018/19 40



-

-
m=)

particle density (

F 0
SN ] 20
10’ | ] -
F N\
™ N\ 200 -
- \\
5 \ - —~ 10
""2 - \\\ « \ i
: \ ( \\\ '\‘ g ™ \.' -
- \ B 400 4 —
10}, \, = 17 &
F>~ \ i {1 =
o \\\\ N\ -g' i %
- \ \'\ = N — 5
1 \\ N \\ .ﬁ ' ’g
- hadrons™_ \ g 600 - 1 3
s O \ 'é_ (<)
- \\\ \\
o \ E 13
10 b NN 8 | N
S \\ \ 800 — / )‘
o2 i \ \ | | hadrons y
10—~ L N\ | < 100) ra .
= \\ -
8 N\ - ) ;
10-3 1 [ 1 ] £ 008 -Il | R P B BT i B |
1 0 1 2 3 4 010
cnre distance (km) particle number
Figurc 16.1 s for vertical, proton-

induced showers at lO eV The lateral distribution of thep'lrtlcles at Uround is
calculaled lor 870 g/cm , the deplh ol the Auger Observatory. The energy thresh-

olds of the simulation were 0.25MeV for y, et and 0.1 GeV for muons and

hadrons (from [33]).

Jorg R. Horandel, APP 2018/19

41



A Matthews Heitler Model — Electromagnetic Cascades

pair production y 2> e++e-
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n T
after n splitting lengths: = =nXoln2 and N =2"=exp <70>

energy per particle £ = Eo/N  critical energy E; = 85 MeV

number of particles at shower maximum | <E0>
n
FEe

)
Nipaz = 2" = —

— ’}’LC —
e
EC

J. Matthews, Astrop. Phys. 22 (2005) 387 JRH, Mod. Phys. Lett. A 22 (2007) 1533
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A Matthews Heitler Model —

s
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J. Matthews, Astrop. Phys. 22 (2005) 387
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A Matthews Heitler Model — Hadronic Cascades

hadronic interaction m+A =2 n° + t+ + -

interaction length A.w-air~120 g/cm2

=1

J. Matthews, Astrop. Phys. 22 (2005) 387

Yo \\ - - hadronic interaction

/ ' \\ a3 - decay
/. K
ARVANARFA ” —
JRWA j/ WA ,critical energy” E_~20 GeV
in each interaction 3/2N_,, particles: N, w+-and 2N, n® N, ~10
after ninteractions N = (Nep) "= T3
(3Ven)

] . In Eo/Egr EO
after n_interactions E =E . n. = —— =0.851g | —

superposition model
particle (E,A) > A proton showers with energy E /A JRH, Mod. Phys. Lett. A 22 (2007) 1533
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A Matthews Heitler Model — N, and N,
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A Matthews Heitler Model — N vs. N,

N.-N, plane N.-N, ratio
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A Heitler Model - X,
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A Matthews Heitler Model — mass resolution in EAS

measurements
depth of shower typical expected mass
maximum uncertainty resolution
XA =X° ~X,InA AX o ~ 20 g/cm”

radiation length X,=36.7 g/cm?2

= AlnA~08—1

electron-muon ratio

lg(Ne/Ny) = C —0.0651n 4. N 4 to 5 mass groups
ASE ~ 16% — 20% b, He, CNO, (Si), Fe

n

JRH, Mod. Phys. Lett. A 22 (2007) 1533
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