Astroparticle Physics 2919/20

Lectures:

- 04.02.2020 <u>1. Historical introduction, basic properties of cosmic rays</u>
- 06.02.2020 2. Hadronic interactions and accelerator data
- 11.02.2020 3. Cascade equations
- 13.02.2020 <u>4. Electromagnetic cascades</u>
- 18.02.2020 <u>5. Extensive air showers</u>
- 20.02.2020 6. Detectors for extensive air showers
- 27.02.2020 7. High energy cosmic rays and the knee in the energy spectrum of cosmic rays
- 03.03.2020 8. Radio detection of extensive air showers
- 05.03.2020 9. Acceleration, astrophysical accelerators and beam dumps
- 10.03.2020 10. Extragalactic propagation of cosmic rays
- 12.03.2020 11. Ultra high energy cosmic rays
- 17.03.2020 12. Astrophysical gamma rays and neutrinos
- 14.04.2020 13. Neutrino astronomy
- 12.05.2020 14. Gamma-ray astronomy

http://particle.astro.ru.nl/goto.html?astropart1920

Iecture 7 High energy cosmic rays and the knee in the energy spectrum Gaisser chapter 17

17	Very	high energy cosmic rays	341
	17.1	The knee of the spectrum	342
	17.2	Depth of shower maximum and composition	345
	17.3	Ultra-high-energy cosmic rays	348
	17.4	Sources of extragalactic cosmic rays	351
	17.5	Future experiments	355

Fig. 1. All-particle energy spectrum of cosmic rays as measured directly with detectors above the atmosphere and with air shower detectors. At low energies, the flux of primary protons is shown.

r= 0.04 pc 3.6 pc 360 pc 36 kpc

Extensive air showers – Mass

KArlsruhe Shower Core and Array DEtector

Simultaneous measurement of electromagnetic, HV, Anode and Glas fiber cable dynode connectors muonic, Argon Photo hadronic multiplie Light-collector e/γ - Detector (5 cm liquid scintillator) shower components e-/+ 10 cm Lead 4 cm Iron u - Detector (3 cm plastic scintillator) 200 00 11

T. Antoni et al, Nucl. Instr. & Meth. A 513 (2004) 490

Event reconstruction in the scintillator array electromagnetic component

shower core	$\Delta r = 2.5 - 5.5 \text{ m}$
shower direction	$\Delta \alpha = 0.5^{\circ} - 1.2^{\circ}$
shower size	$\Delta N_{e}/N_{e} = 6 - 12 \%$

KASCADE GRANDE Array

37 detector stations

KASCADE

200 m x 200 m

370 m² e/γ: scintillation counter

700 m

700 m

KASCADE-Grande – Lateral distributions

Jörg R. Hörandel, APP 2019/20 13

KASCADE: Energy spectra for elemental groups

Knee caused by cut-off for light elements

Astrophysical interpretation limited by description of interactions in the atmosphere

KASCADE: Energy spectra for elemental groups

Knee caused by cut-off for light elements Astrophysical interpretation limited by description of interactions in the atmosphere

Test of hadronic interaction models

QGSJET 01

Nuclear Physics B (Proc. Suppl.) 75A (1999) 238-240

SUPPLEMENTS

Electron, muon and hadron size spectra of EAS in the "knee" region R. Glasstetter^a and J.R. Hörandel^a for the KASCADE Collaboration^{*}

Figure 1. Electromagnetic (top) and muonic (bottom) shower size spectra for different zenith angle bins.

Figure 3. Hadronic shower size spectrum.

Figure 4. Knee position and spectral indices.

KASCADE-Grande

W.D. Apel et al., PRL 107 (2011) 171104

KASCADE-Grande

 $k = \frac{\log_{10}(N_{\rm ch}/N_{\mu}) - \log_{10}(N_{\rm ch}/N_{\mu})_{\rm H}}{\log_{10}(N_{\rm ch}/N_{\mu})_{\rm Fe} - \log_{10}(N_{\rm ch}/N_{\mu})_{\rm H}},$

W.D. Apel et al., PRL 107 (2011) 171104

KASCADE-Grande

Ice Cube - Ice Top

Ice Cube - Ice Top

K. Rawlins J Phys Conf. Ser. 718 (2016) 052033

Jörg R. Hörandel, APP 2019/20 22

Ice Cube - Ice Top

K. Rawlins J Phys Conf. Ser. 718 (2016) 052033

Cosmic-ray energy spectrum

JRH, Astropart. Phys. 19 (2003) 193

TALE (TA low-energy extension)

Figure 3: TALE Cosmic rays energy spectrum measured with TALE. The result is based on a QGSJet II-3 hadronic model assumption. A mixed primary composition given by the H4a, and "global fit" models, as well as a TALE derived mix was used in the calculations.

The re-acceleration model

S. Thoudam, ECRS 2014, Kiel

Transport equation for cosmic rays in the Galaxy

Transport equation for cosmic rays in the Galaxy

1st order Fermi acceleration at strong shock

c) rest system of shock front

d) rest system of shocked ISM

energy gain

 $\frac{\Delta E}{E} \propto \frac{U_s}{c}$

 $N(E) dE \propto E^{-2} dE$

power law with spectral index -2.0 ... -2.1

Bell, Blanford, Ostriker (1978)

Supernova remnant (SNR) Cassiopeia A

H.E.S.S. supernova remnant RXJ 1713

Acceleration of cosmic rays at SNR

S. Funk, Ann. Rev. Nucl. Part. Sci. 65 (2015) 245

Jörg R. Hörandel, APP 2019/20 36

general considerations about accelerators

trajectory of particle in B field

centripedal force = Lorentz force

$$m\frac{v^{2}}{r} = q \cdot v \cdot B \qquad \qquad m \cdot v = p \quad \text{momentum}$$
$$\frac{p}{r} = Z \cdot e \cdot B$$
$$r_{L} = \frac{p}{z \cdot e \cdot B} \quad \text{Larmor radius}$$

L dimension of accelerator $L > 2 r_L$ closer look (Hillas 1984):

velocity of scattering centers

$$\beta > rac{2r_L}{\beta}$$
 s $\beta = rac{v}{c}$

$$L > \frac{2 \cdot p}{z \cdot e \cdot B \cdot \beta}$$

B \cdot L > \frac{2 \cdot p}{z \cdot e \cdot \beta} Hillas criterion

in astrophyscial units

$$r_L = 1.08 \text{ pc } \frac{E_{15}}{Z \cdot B_{\mu G}}$$

$$B_{\mu G} \cdot L_{pc} > \frac{2 \cdot E_{15}}{Z \cdot \beta} \qquad \text{necessary condition} \\ \text{not sufficient}$$

$$E_{15} < Z \cdot B_{\mu G} \cdot L_{pc} \cdot \frac{\beta}{2}$$

Fig. 1. Energy spectra for different cosmic-ray elements. *Solid line*: Model prediction for the SNR-CRs. *Data*: CREAM (Ahn et al. 2009; Yoon et al. 2011), ATIC-2 (Panov et al. 2007), AMS-02 (Aguilar et al. 2015a,b), PAMELA (Adriani et al. 2011), CRN (Müller et al. 1991; Swordy et al. 1990), HEAO (Engelmann et al. 1990), TRACER (Obermeier et al. 2011), and KASCADE (Antoni et al. 2005). Cosmic-ray source parameters (q, f) used in the calculation are given in Table 1. For the other model parameters (D_0, a, η, s) , see text for details.

Contribution of (regular) SNR-CR

$$E_c = Z \cdot 4.5 \ 10^6 \ \mathrm{GeV}$$

$$Q(p) = AQ_0(Ap)^{-q} \exp\left(-\frac{Ap}{Zp_c}\right),$$

Table 1. Source spectral indices, q, and energy injected per supernova, f, for the different species of cosmic rays used in the calculation of the SNR-CRs spectra shown in Figures 1 and 2.

Particle type	q	f (×10 ⁴⁹ ergs)
Proton	2.24	6.95
Helium	2.21	0.79
Carbon	2.21	2.42×10^{-2}
Oxygen	2.25	2.52×10^{-2}
Neon	2.25	3.78×10^{-3}
Magnesium	2.29	5.17×10^{-3}
Silicon	2.25	5.01×10^{-3}
Iron	2.25	4.95×10^{-3}

Thoudam et al., A&A 595 (2016) A33

Transport equation for cosmic rays in the Galaxy

Pathlength of cosmic rays in Gala y

10³ A. Obarmeier et al., ApJ 752 (2012) 69

Pathlength vs. interaction length

pathlength in Galaxy
$$\lambda_{esc} = 5 - 10 ~{
m g/cm}^2$$

interaction length

- nuclear radius
- cross section
- **ISM: protons**
- interaction length

$$r = r_0 A^{1/3} \qquad r_0 = 1.3 \cdot 10^{-13} \text{ cm}$$

$$\sigma_{p-A} = \pi (r_p + r_0 A^{1/3})^2$$

$$n = 1/\text{cm}^3 \quad \rho = 1.67 \cdot 10^{-24} \text{ g/cm}^3$$

$$\lambda_{p-A} = \frac{\rho}{\sigma_{p-A} \cdot n}$$

$$\lambda_{p-p} = 21 \text{ g/cm}^2 \qquad > \lambda_{esc}$$

$$\lambda_{p-Fe} = 1.6 \text{ g/cm}^2 \qquad < \lambda_{esc}$$

Shape of energy spectrum

Fig. 5. Spectral index γ_Z versus nuclear charge Z (see Table 1). The solid line represents a three parameter fit according to Eq. (6), the dashed graph a linear fit.

JRH, Astropart. Phys. 19 (2003) 193

Transport equation for cosmic rays in the Galaxy

Available online at www.sciencedirect.com

Astroparticle Physics

www.elsevier.com/locate/astropart

example of knee due to propagation/leakage from Galaxy

Astroparticle Physics 27 (2007) 119–126

Propagation of super-high-energy cosmic rays in the Galaxy

Jörg R. Hörandel^{a,*}, Nikolai N. Kalmykov^b, Aleksei V. Timokhin^c

The steady-state diffusion equation for the cosmic-ray density N(r) is (neglecting nuclear interactions and energy losses)

 $-\nabla_i D_{ij}(r) \nabla_j N(r) = Q(r).$ (1)

Q(r) is the cosmic-ray source term and $D_{ij}(r)$ the diffusion tensor.

Under the assumption of azimuthal symmetry and taking into account the predominance of the toroidal component of the magnetic field, Eq. (1) is presented in cylindrical coordinates as

$$\begin{bmatrix} -\frac{1}{r}\frac{\partial}{\partial r}rD_{\perp}\frac{\partial}{\partial r} - \frac{\partial}{\partial z}D_{\perp}\frac{\partial}{\partial z} - \frac{\partial}{\partial z}D_{A}\frac{\partial}{\partial r} \\ +\frac{1}{r}\frac{\partial}{\partial r}rD_{A}\frac{\partial}{\partial z}\end{bmatrix}N(r,z) = Q(r,z),$$
(2)

where N(r,z) is the cosmic-ray density averaged over the large-scale fluctuations with a characteristic scale $L \sim 100 \text{ pc} [3]$. $D_{\perp} \propto E^m$ is the diffusion coefficient, where *m* is much less than one ($m \approx 0.2$), and $D_A \propto E$ the Hall diffusion coefficient. The influence of Hall diffusion becomes predominant at high energies (>10¹⁵ eV). The sharp

The magnetic field of the Galaxy consists of a large-scale regular and a chaotic, irregular component $\vec{B} = \vec{B}_{reg} + \vec{B}_{irr}$. A purely azimuthal magnetic field was assumed for the regular field

$$B_z = 0, \quad B_r = 0, \quad B_\phi = 1 \ \mu G \exp\left(-\frac{z^2}{z_0^2} - \frac{r^2}{r_0^2}\right),$$

where $z_0 = 5$ kpc and $r_0 = 10$ kpc are constants [3].

Fig. 7. Proton flux as obtained from various measurements, for references see [28], compared to the spectra shown in Fig. 6 (black lines) and the *polygonato* model [26] (grey, dashed line).

Origin of the knee?

Acceleration (SNR)

.. in SNR .. in SNR + radio galaxies .. in oblique shocks .. in variety of SNR Single source model Reacceleration in galactic wind

Leakage from Galaxy

Minimum pathlength model Anomalous diffusion model Hall diffusion model Diffusion in turbulent magnetic fields Diffusion and drift Berezhko & Ksenofontov Stanev .. Kobayakawa .. Sveshnikova Erlykin & Wolfendale Völk & Zirakashvili

Ptuskin .., Kalmykov ..

Ogio & Kakimoto

Swordy

Lagutin ..

Roulet ...

(updated)

JRH, Astropart. Phys. 21 (2004) 241

maximum energy

 $E_{max} \propto B \cdot Z$ $E_{max} \approx Z \cdot 100 \text{ TeV} \dots Z \cdot 5 \text{ PeV}$

leakage from Galaxy

48

Jörg R. Hörandel, APP 2019/20

Transition to extragalactic CR component

J. Blümer et al. / Progress in Particle and Nuclear Physics 63 (2009) 293–338

Fig. 26. *Left panel*: Cosmic-ray energy spectra according to the poly-gonato model [2]. The spectra for groups of elements are labeled by their respective nuclear charge numbers. The sum of all elements yields the galactic all-particle spectrum (–) which is compared to the average measured flux. In addition, a hypothetical extragalactic component is shown to account for the observed all-particle flux (- - -). Right panel: Transition from galactic to extragalactic cosmic rays according to Berezinsky et al. [451]. Calculated spectra of extragalactic protons (curves 1, 2, 3) and of galactic iron nuclei (curves 1', 2', 3') are compared with the all-particle spectrum from the Akeno and AGASA experiments. KASCADE data are shown as filled squares for the all-particle flux and as open circles for the flux of iron nuclei.

327

Transition to extragalactic CR component

"classical" supernovae + additional component

Contribution of (regular) SNR-CR to all-particle spectrum

Fig. 2. Contribution of SNR-CRs to the all-particle cosmic-ray spectrum. The thin lines represent spectra for the individual elements, and the thick-solid line represents the total contribution. The calculation assumes an exponential cut-off energy for protons at $E_c = 4.5 \times 10^6$ GeV. Other model parameters, and the low-energy data are the same as in Figure 1. Error bars are shown only for the proton and helium data. High-energy data: KASCADE (Antoni et al. 2005), IceTop (Aartsen et al. 2013), Tibet III (Amenomori et al. 2008), the Pierre Auger Observatory (Schulz et al. 2013), and HiRes II (Abbasi et al. 2009).

~8% of mechanical power of SN --> CRs

Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory

of all-particle spectrum in the WR-CR model (Figure 6).

Particle type	C/He = 0.1	C/He = 0.4
	$f(\times 10^{49} \text{ ergs})$	$f(\times 10^{49} \text{ ergs})$
Proton	8.11	8.11
Helium	0.67	0.78
Carbon	2.11×10^{-2}	$0.73 imes 10^{-2}$
Oxygen	2.94×10^{-2}	2.94×10^{-2}
Neon	4.41×10^{-3}	4.41×10^{-3}
Magnesium	6.03×10^{-3}	6.03×10^{-3}
Silicon	$5.84 imes 10^{-3}$	5.84×10^{-3}
Iron	5.77×10^{-3}	5.77×10^{-3}

Mean logarithmic mass (InA) WR-CR (C/He=0.4) + EG scenarios

Fig. 11. Mean logarithmic mass for the three different EG-CR models combined with the WR-CR (C/He = 0.4) model. Data are the same as in Figure 8. Results obtained using WR-CR (C/He = 0.1) model are shown in Appendix B.

Cosmic rays at the knee Results and implications

- knee in all-particle spectrum at ~4.5 PeV caused by fall-off of light elements (p, He)
- experimental (world) data indicate rigidity-dependent fall-off of individual elements

(in particular unfolding by KASCADE[-Grande] and IceCube/Top)

- spectrum above knee is superposition of individual spectra (elemental knees)
 - -> fine structure in all-particle spectrum
 - -> end of galactic CR component
- astrophysical origin of knee: combination of maximum energy attained in sources (Supernovae) (Hillas criterion) and leakage from Galaxy
- 2nd galactic component at ~10¹⁷ eV?
- extra-galactic origin >10¹⁸ eV