Direct measurement of cosmic rays put detectors for particles above the at mosphere on satellites or balloons to directly measure the properties of cosmic ray problem: mixture of defferent particles with different energie's ininging on the detector from different directions => a combination of different detectors is required, operated in coincidence

Ulysses High Energy Telescope (HET)

in which energy range can we use such a
delector?
-the E has to be large enough to cross
$$D_A + D_2$$

and impirize on D_3
- but low enough to be absorbed in D_3
particles loose enorgy through ionization
described by Bette Bloch formula
 $\frac{dE}{dx} = \frac{Z_{pv}^2 \cdot 4\pi \cdot N_A \cdot e^4 \cdot Z_{abs}}{v_{pv}^2} \left(ln \frac{2mpr \cdot v_{pv}^2}{I(A - \beta_{pv}^2)} - \beta_{pv}^2 \right)$
 $\propto \frac{Z_{pv}^2}{v_{pv}^2} \propto Z_{pv}^2 \frac{mpv}{E_{pv}^{kin}}$

specific energy loss Bethe Bloch formula

particle identification

Fig. 3.4. Left: Energy loss in the first plane (E1) vs. total energy (E_{tot}) detected by the NINA telescope for particles fragmented from a ¹²C test beam [8]. Right: Scatter plot of ΔE in 12 mm Si vs. ΔE in the following 6 mm Si from calibration of the CRIS instrument in an ⁵⁶Fe beam [5]

Advanced Composition Explorer (ACE)

NASA / Goddard Space Flight Center; Start: 25.8.97, 9 wissensch. Instrumente (156 kg) ; 90% duty cycle $| \le Z \le 28$; 1 keV $\le E \le 600 \text{ A} \cdot \text{MeV}$

CRIS: The Cosmic Ray Isotope Spectrometer

this technique works up to several 100 MeV/mileon since the particles have to be absorbed

For higher energies up to ~1 TeV one can use

magnet spectrometer

segmented counter (scintillator) e.g. were chamber Si ship detector

high spatial resolution

T_A & T₂ time of flight (TOF) measurements
-> direction
need high time resolution
brack reconstruction -> curvature g

$$\frac{mv^2}{g} = v \cdot B \cdot Z = > p = B \cdot g \cdot Z$$

Z is determined from signal in scintillator
 $(\propto Z^2)$

Alpha Magnetic Spectrometer - AMS

Alpha Magnetic Spectrometer - AMS

Alpha Magnetic Spectrometer - AMS

Čevenhov detector

charged particle in a medium units repactory index a moves with a velocity v 5 5

-> Cerenhov radiation

- ving imaging Cerenhov counter (RICH) => measure B from Oc Standown Transition railiation désectors below I threshold charged particles traverse a borde between two medie mith different dielectric properties -> fransition radiation (finzburg 1946)

TRD test at CERN

Transition Radiation Detector

Fig. 8. Average detector signal versus Lorentz factor for a CRN-like radiator configuration. The open circles are data from MWPC 1, and the open squares are from MWPC 2, as shown in the inset schematic. The dashed lines serve to guide the eye.

Cosmic Ray Nuclei instrument - CRN

TRACER experiment

TRACER Overview

- Two pairs of Cerenkov and Scintillation Detectors
- 1600 Proportional Tubes (2cm × 2m) in 16 Layers
 - Upper 8 Layers: dE/dX in Gas (dE/dX array)
 - Lower 8 Layers: dE/dX+TR (TRD)

TRACER Experiment - Mc Murdo, Antarctica flight: 12. – 26. December 2003 ~ 40 km (3-5 g/cm²)

TRACER Experiment

TRACER Experiment - Mc Murdo, Antarctica flight: 12. – 26. December 2003 ~ 40 km (3-5 g/cm²)

halloon filled under 10° m3 lde \$ 130m total mass ~ St flight altitude ~ 40 hm (3-5 g/cm²)

charge measurement

 $dt \propto t^{L}$

2 × Vsignal in scindillatar

TRACER - measured charge distribution

FIG. 5.—Charge histogram for all events measured in flight.