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In the next few chapters we will discuss cosmic ra cascades specifically in the
atmosphere of the Earth. Many of the basvl 1des ad result apply also to many
other settmgs and problems of interest th w111 be dlSCUSSdlltI‘ These include
particle pdutlo in stellartosres and in outflows from active galaxies and
astrophysical explosions, as well as in propagation through the interstellar medium.

Jérg R. Hérandel, APP 2021/22 4



5.1 aic euaton and o

The linear development of a cascade of particles in the atmosphere can be described
by a system of equations of the form \
{ dN;(E;, X) N:(Ei, X) Ni(
| dX

E.. X
d

Ai i
J .
+Zrc Ptk £)) M (B X) 4,
— | E; Aj !
J=i

(5.1)

Here, N;(E;, X)dE; is the flux of particles of type i at slant depth X in the atmo-
sphere with energies in the interval E to E + dE. Note that X is measured from the
top of the atmosphere downward along the direction of the particle that initiated the
cascade, as shown in Figure 5.1. The probability that a particle of type j interacts
in traversing an infinitesimal element of the atmosphere is dX /A ;(E;), where A
is the interaction length in air of particles of type j. Similarly, dX /d;(E;) is the
probability that a particle of type j decays in dX. All three quantities X, A; and d;
must be expressed in consistent units, and we use g/cm?. Energy loss by ionization
is not included in Eq. 5.1 because it is not important for hadrons in the atmosphere
or for high-energy electrons.
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Figure 5.1 Definition of variables to describe the atmosphere. X is the slant depth,
6™ is the local zenith angle in the atmosphere at slant depth X, and £ is the local
vertical altitude. Vertical depth (g/cmz) is indicated on the right. The zenith angle
6 at the detector is larger than 6™ because of curvature of the Earth.
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Interaction length and decay length depend on density of the medium in different
ways. A characteristic length in g/cm? is obtained by multiplying the corresponding

length in cm by the density. Thus

(5.2)

where p(h) is the density of the atmosphere at altitude 4 and n, is the corre-
sponding local number density of nuclei of mean mass A in the atmosphere. For
a dcrivation of Eq. 5.2, see Appendix A.3. The de endn density cncclsout

where y is the Lorentz factor of a particle with rest lifetime ;.

Jérg R. Hérandel, APP 2021/22 7



The function Fj;(E;, E; ) in Eq. 5.1 1s the dimensionless partlcle yield that fol-
lows from the 1nclusw Cross section (1ntegrated over transverse momentum) for

a particle of ey - to collide with an air nucleus and produce an outgoing
particle i with energy E < E In general we deﬁne

(5.4)

where dn; is the number of particles of type i produced on average in the energy
bin dE; around E; per collision of an incident particle of type j. All quantities
in Eq. 5.4 are defined in the lab system. The relation to center-of-mass quantities
can be derived from the definitions in Table 4.1. From Eq. 4.15 it follows that for
energetic secondaries, i.e. those with E. » my .

E./E, = x; ~ x™. (5.5)

(We always define CMS as a projectile on a target nucleon even when that nucleon
is bound in a nucleus because nuclear blndmg energies will usually be much lower
than energies of interest in cosmic ray problems we consider.)

Jorg R. Hérandel, APP 2021/22 8



Some insight into how the cascade equation 5.1 works may be gained by calcu-
lating the spectrum of pi produced by a

‘ » power-law spectrum of nucleons
(N(E) = K E- (1 ) p51 througha thin rget of thickness d X glven in /rri :
We assume the scaling approximation in which the transfer function F; ;i depends
only on the ratio of the energy of the produced particle to the energy of the beam

particle (x; as defined in Eq. 5.5). Then

dE 5.6
dx E, AN N (5-6)
| r de
= N(EH/XL)FN;((.X‘L)—z
)"N JO Xr
K (' /x \'"! dx
- (_L) FNJt (xL)—QL
)\'A’ JO E)T xL
N(Eg) (' ,_ N(E
= ( V)J x) lFNn(XL)de = ( N)ZNH
A'N 0 }\.N
The spectrum-weighted moment
1 | i
—1 n)
ZN][ = fxz FNJT(xL) de = JX{ d . dXL (57)
XL
0 0

characterizes the physics of pion production by a spectrum of nucleons. An
1mportant implication of Eq. 5.6 is that, in the scallng approx1matlon the pro-
duction spectrumof ‘the secndarls has the same owr - as the baspectrm
Spectrum-weighted moments are discussed further in Section 5.5 of this chapter.
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‘_ 52 Boundary condltlons |

We will need solutions of the cascade equation 5.1 SUbjCCt to two physically
important boundary conditions that correspond to two quite different types of
experiments. The boundary conditions are

nucleons

cm?srs GeV/A

and

where A here is the mass number of an incident nucleus. q 5.8 is relevant for
a detector that simply measures the rate at which particles of a given type pass
thdgh exlllt porllav‘v ar01at10n is based ﬁta with prlary
energy less than a TeV, but it is useful as a guide up to a PeV. Eq. 5.9 is the bound-
ary condition relevant for an air shower experiment that traces the development
of a cascade through the atmor "An example is an array of detectors on the
ground with a fast-timing capability that can be triggered to measure the coincident,
extended shower front initiated at the top of the atmosphere by a single particle.
In the case of a ground array, the primary particle has to have sufficient energy to
give a measurable cascade at the surface of the Earth. Cherenkov and fluorescence
detectors can trace the development of showers through the atmosphere.
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Figure 24.1: Major components of the primary cosmic radiation from Refs. [1-12
The figure was created by P. Boyle and D. Muller. Color version at end of book.
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5 3 Energy loss by charged partlcles

Charged particles lose energy by ionizing the medlum through which they propa-
gate and by interacting with nuclei to produce secondary radiation. Losses due to
ionization vary slowly with energy, while radiative losses increase in proportion to
energy. This leads to the simple approximate form,

(5.10)

where E is the energy of the particle, dX is the amount of matter traversed, and
the energy loss parameters a(MeV/g/cm?) and &(g/cm?) vary slowly with energy.
The critical energy E. can be defined as the energy at which radiative losses equal
ionization losses. Then

(5.11)
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Fig. 27.1: Stopping power (= (—dF/dx)) for positive muons in copper as a
function of 8y = p/Mec over nine orders of magnitude in momentum (12 orders
of magnitude in kinetic energy). Solid curves indicate the total stopping power.
Data below the break at v ~ 0.1 are taken from ICRU 49 [4], and data
at higher energies are from Ref. 5. Vertical bands indicate boundaries between
different approximations discussed in the text. The short dotted lines labeled
“u~ 7 illustrate the “Barkas effect,” the dependence of stopping power on projectile
charge at very low energies [6].
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The parameters in Eq. 5.10, and hence the phenomenology of energy loss,
depend strongly on the identity of the partlcle and, to a lesser extent, on the proper-
ties of the medium in which they propagate.' In particular, bremsstrahlung losses,
Which involve transverse acceleration of the propagating particle, are proportional

to r2 x (m(,/M) where r, = e?/(m, cz) ~ 2.818 fm is the classical radius of the
eleciron and . ¥’ T . | "th

, Is the ratio of the mass ol the electron to the mass of the radi-
ating particle. Bremsstrahlung is the dominant radiative loss process for electrons
and dominates above E, (e) 87 MeV 1 in the atmosphere The factor (m./m,)>

suppresses bremsstrahlung for 7muons‘ of mass n‘ﬂ = 106 MeV by more than four
orders of magnitude. "Muons also lose energy by photon-mediated fragmentation
of nuclei, including pion production, and by direct pair production (© + A —
i + A + e + e7). These have an effect comparable to that of bremsstrahlung.
As a consequence, the critical energy for muons is E () ~ 500 GeV. We will
discuss energy loss by muons in more detail in Chapter 8 in connection with its
consequences for observation of muons underground.

For E » E., the solution of Eq. 5.10 for a particle injected at X = 0 with an
initial energy Ej is

(5.12)

For electrons, & is calledthe‘radltatlonlength often represented by & = X. Its
value for electrons is 63 g/cm 1n‘hydroe', 36 g/cm? in water, 37 g/cm in air, 22
g/cm? in silicon and 13.8 g/cm? in iron.
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Electrons, positrons and photons

The basic high-energy processes that make up an electromagnetic cascade are
pair production and bremsstrahlung. The basic formulas are due to Hans Bethe
' 93)'[189] The sw'rerA is eventually dissipated by ionization of the
medium by all the electrons and osntrons in the cascade. As long " as we consider
particles with energies large compared to the critical energy, however, collision
losses, and also Compton scattering, can be neglected in calculating the develop-
ment of the cascade. Since both pair production and bremsstrahlung occur in the

field of an atomic nucleus, the processes will be screened by the atomic electrons
for impact parameters larger than the radius of the atom.
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83

On the Stopping of Fast Particles and on the Creation of Positive
Electrons

By H. BeTrE, Manchester, and W. HEITLER, Bristol
(Communicated by P. A. M. Dirac, F.R.S.—Received February 27, 1934)

Introduction

The stopping power of matter for fast particles is at present believed to be
due to three different processes : (1) the ionization ; (2) the nuclear scattering ;
(3) the emission of radiation under the influence of the electric field of a nucleus.
The first two processes have been treated in quantum mechanics by Bethe,t
Moller,f and Bloch§ in a very satisfactory way. A provisional estimation
of the order of magnitude to be expected in the third process has been given
by Heitler.|| The result obtained was that the cross-section ¢ for the energy
loss by radiation for very fast particles (if the primary energy E,> me?) is

of the order 2 g
gl @
where Z is the nuclear charge.

It is the aim of the present paper to discuss in greater detail the rate of
loss of energy by this third process and its dependence on the primary energy ;
in particular we shall consider the effect of screening. The results obtained
for very high energies (> 137 mc?) seem to be in disagreement with experiments
made by Anderson (cf. § 7).

By an exactly similar calculation another process can be studied, namely,
the “ twin birth ” of a positive and negative electron due to a light quantum in
the presence of a nucleus. This process is the converse of the scattering of an
electron with loss of radiation, if the final state has negative energy. The results
are in exact agreement with recent measurements for y-rays of 3-10 mc?. A
provisional estimate of the probability of this process has been given by Plesset
and Oppenheimer, who also obtain for the cross-section a quantity of the
order of magnitude given by equation (1).

t ¢ Ann. Physik,” vol. 5, p. 325 (1930) ; * Z. Physik,’ vol. 76, p. 203 (1932).
1 * Ann. Physik,’ vol. 14, p. 531 (1932).
§ *Z. Physik,’ vol. 81, p. 363 (1933); ‘ Ann. Physik,’ vol. 16, p. 285 (1933).

i ¢ Z. Physik,” vol. 84, p. 145 (1938). Referred to later as L.
9 ¢ Phys. Rev.,’ vol. 44, p. 53 (1933).

¢ 2

H. Bethe and W. Heitler

Proceedings of the Royal Society of
London. Series A, Containing Papers of a
Mathematical and Physical Character

Vol. 146, No. 856 (Aug. 1, 1934), pp. 83-112
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The probability for an electron of energy E to radiate a photon of energy W =
vE in aversmgdt dX / X of atmosphels ¢(E vdtd W1th o |

(5.13)

Here we use the conventional notation of electromagnetic cascade theory and scale
the distance in units of the radiation length, X. The parameter » in Eq. 5.13 i1s

b = (18 In[183/Z'*])~! ~ 0.0122. (5.14)

The energy loss rate due to bremsstrahlung is therefore

Wthh has the expected form of Eq

Jorg R. Hérandel, APP 2021/22 17



The corresponding probability for a photon to produce a pair in which the
positron, say, has energy E = uW is ¥ (W, u)dtdu. In approximation A,

(5.16)

Unlike th cse fr ernsstalng hichhas e chartristic inrared diver-
gence, the pair production probability can be integrated to get the total probability
for pair production per unit radiation length. It is

1
1/ Apair = J v(u)du = 7/9 — b/3 ~ 7/9. (5.17)
0
From Eq. 5.2 the pair production cross section per target air nucleus is therefore

(5.18)

Jorg R. Hérandel, APP 2021/22 18



The Cross sectlon for bremsstrahlung,

' ¢ v, | (5.19)
)/ )‘-brems o A N

is logarithmically divergent at v — 0. ThlS mfrared divergence requires special
care when the distributions (5.13) and (5.15) are used as the basis of a Monte Carlo

calculation. Basically, a simulation consists of choosing randomly the distance a
photon (or electron) propagates from an exponential distribution with character-
istic length Apgir (OF Aprems), then splitting the energy randomly according to the
distribution 5.16 for pair production or 5.13 for bremsstrahlung. A cutoff proce-
dure must be introduced for bremsstrahlung to handle the infrared divergence. The
procedure must be tailored to the application, but basically it consists of using a
cutoff, v, chosen so that v, Ey € Ey,, where Ey, 1s the lowest energy of interest
in the problem.” At low energies, incomplete screening, energy loss by ionization

and Coulomb scattering must also be included. Standard packages for calculat-

ing electromagnetic cascades in a user-defined, complex medium are the programs
GEANT [191], EGS [192] and FLUKA [193].

Jérg R. Hérandel, APP 2021/22 19



2:4.1_Cascade equations

The coupled equations for electromagnetic cascades are an instance of Eq. 5.1.

They are
wwmber of
plotons at (5.20)
deptt ¢
and
d Eat x d e—e
ar =_71( ) +J yt(E’,t) e dE’ (3.21)
dt )\brems E dEdt

+2 ro y(W', 1) drty e dw’
£ "7 dEdt ’

where y (W, t)dW is the number of photons in dW at depth ¢ and 7 (E, t)dE is

the number of e~ in dE at depth 7. For energies that are large compared to the

critical energy, collisional losses and Coulomb scattering can be neglected and the

scaling functions 5.13 and 5.16 can be used. This is Approximation A.
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roximation A. With the

identifications,
dn 1%
1 Se—y Y
dwdr ¢(E’)’ (5:22)
dn E
=y (— 5.23
TEd W(W,) (5.23)
and
e _ g1 2 (5.24)
dEdr E'" '

the cascade equations 5.20 and 5.21 can be written in scaling form:

1 1
‘;_’: S +f0n( E o)L Jrzf0 v(E ™. (5.26)

)»brems | —v Il —v U U

The first two terms on the right side of Eq. 5.26 must be combined (using the
relation 5.19) to remove the infrared divergence at v — 0.
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5.4.2 Power l‘_”", solutioyns‘

By direct substitution it is straightforward to show that Egs. 5.25 and 5.26 have
solutionsoftheform

Ly(Wo) = £,()W ) and x(E,1) = f()E~CTD | (527)

in which the e Tactorize S-iig these trial
forms into Eqgs. 5.20 and 5.2 1 and changmg to scaled energy Varlables glves

- —fy( oo+ 10 [ voln | 628

0

and

1 1
fa(t) = —fn(f)L [1—(1—v)]p(v)dv + fy(f)2fo w i (u)du. | (5.29)

Because of the scaling form of the differential cross sections of Eq. 5.23, which
depend only on the ratio of the energy of the produced particle to that of the incident
particle, the energy dependence cancels out and we are left with ordinary differen-
tial equations for the dependence on depth. Note also how the infrared divergence
cancels in the first term on the right-hand side of Eq. 5.29.
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The integrals in Egs. 5.28 and 5.29 are spectrum-weighted moments of the cross
sections for bremsstrahlung and palr productlon Analogous quantities called Z-
factors appear in the solutions of the cascade equations for hadrons, as discussed

later in this chapter.’
Table 5.1 gives some values for the spectrum-weighted moments and other

parameters of electromagnetic cascade theory in the conventional notation of [ 194].

Table 5.1 Definitions used in cascade theory

Quantity Conventional notation s = 1.0 s = 1.7
1/ pair o0 ~ 7/9 0.774 0.774
fo[1 = (1= v)*]¢(v)dv A(s) 1.0135 1.412
2 (0 ut ¥ (u)du B(s) (= Zy—e) 0.7733 0.5842
() v (v)dv C(s) (= Zewsy) 1.0135 0.5666
root of Eq. 5.33 r(s) 0.0 —0.435
root of Eq. 5.33 r(s) —1.7868 —1.751

Jorg H. Horandel, APF 2021722 £LO



Table 5.1 gives some values for the spectrum-weighted moments and other
parameters of electromagnetic cascade theory in the conventional notation of [ 194].
In terms of these definitions, Eqs. 5.28 and 5.29 may be rewritten as

(5.30)

and
5+ A £0) - B6 50 = 0 (531)
B sllng Eq. 5.30 for fT nd subsuutl the result into Eq. 5.31 we get a second

er dleretlal equ uat1 fo Slmllrl, substituting ”f},'frorn Eq. 5.31 into

Eq 30, we get the qual for y Both f»(7) and f, () satisfy the same second
order differential equation,

f" + (A+09)f + (Aoy — BC) f = 0, (5.32)

which has elementary solutions of the form focexp(ir), where A(s) satisfies the

quadratic equatlon'obtalne'd by substitution of the exponential form into Eq. 5.32

A+ (A+o09)r + (Aop — BC) = 0. (5.33)

Jérg R. Hérandel, APP 2021/22 24



The roots of Eq. 5.33 are

211(s) = —[A(s) + o0] + {[A(s) — 00]* + 4B(s)C(s)}

1| v

(5.34)
and

202(s) =

:, (5.35)
The solutions, f, (f) and f;(f), are linear combinations of the elementary solu-

tions exp|At| and exp|Ai,t]| appropriate for the boundary conditions at injection

For example a ower—lw dlstrlton o 1njected photons w1th V4 0 =
f y( )W (s +') Vat the top of the atmOSphere | AR Rt S

—[A(s) + 00] — {[A(s) — 00]> + 4B(5)C(s)}

- = 5 XE4HUQA+B+MRW—4A+B+A)”y |
1 — A2

(5.38) |
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For depths greater than one radiation ength only the ﬁrst term 1s 1mportant With
the numerical values fromable%l fory = s - '1 7, |

| dyg‘ ~ 1.18fy( ) E~27 13‘-485 | (5.39)

where the depth in Eq 39 1S expressed in g/cm Note that fors = y = 1,
A(s = 1) = 0 and there is notenuatlonTlnls an unsustainable situation
because an input spectrum with an E~! integral spectrum has a logarithmically
divergent energy content.

We will return to properties of solutions of the electromagnetic cascade equation
for §-function boundary conditions in connection with the discussion of air showers

in Chapter 15. see wert lecture, electromaguetic cascades
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5 5 Nucleons in the atmosphere

The simplest version of Eq. 5.1 that corresponds to a physically realistic (and his-
torically important) measurement is an approximate form for the propagation of
nucleons -

IN(E.X)  N(E ) J N2

@ )‘N(r)s

Here N (E X )dE 1S the flux of nucleons (neutrons plus protons) at depth X in
the atmosphere. As in the eletromagnetlc case, it is pss1b1e to find elezentar)
solutions in th " depedeceon enrg ad h' fat01ze ‘N E ' =
G(E) g(X). Substitution of the factorized form into Eq. 5.40, together with a
change of variable from E’ to x; = E/E’, gives
G(E/XL) FNN(XL, E) dx; (
2 " §

(5.41)

Xr
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This separates to

g' B | | Jl G(E/XL) FNN(XL,E) de
g AN(E)  G(E) Jo

(5.42)

In(E/xL) x;

If we define a separation constant —1/A, the solution of the differential equation
for g(X) is written

t E )tht 1 ‘1n'er‘1nt f dph In gehera bause th copllcated |

constraint placed on G(E) by Eq. 5.41, the elementary solution does not corre-
! spond to either of the physically significant boundary conditions, Egs. 5.8 or 5.9.
We show next, however, that it 1s approximately valid for the power law boundary
condition (Eq. 5.8).
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5.5.1 Approximation A for hadrons

In electromagnetic cascade theory the form of the equations in which energy loss
by ionization is neglected, the radiation length i1s independent of energy, and the
inclusive cross sections for pair production and bremsstrahlung scale are called
Approximation A. 1t 1s valid for large energy. We have just seen in the previous
section how these conditions on the cross sections allow power-law solutions.

For hadrons the analogous pox1at10ns are

(5.44)

L AN(E) = Ay = constant

and
(5.45)

| P E) = Fa (). |

In fact, the interaction cross section (and hence A ) varies slowly with energy, and
the assumption of hadronic scaling (Eq. 5.45) is also violated. These energy depen-
dences are mild enough in practice, however, that the solutions in Approximation
A are useful over limited energy ranges, at least as a guide to more detailed results.
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This 1s nice because, to a good approximation, the power-law solutions of
approximation A for hadrons satisfy the boundary condltlo 1mposed by 'te

rfnary cosml’ ay spectrum For ucleon! as_ar _ox1mated b» _Eg _' 5 40 ‘the

solution is

we see that uClo 'ﬂus in 'th: atoshr ha the aeergypectrumas the

primary cosmic rays to the extent that cli is valid. This connection between
scaling for hadronic cross sections and the spectrum of hadrons in the atmosphere
was recognized already by Heitler & Janossy in 1949 [195, 196]. Like Feynman 20
years later [140], they motivated the scaling form for pion production by nucleons

by analogy with bremsstrahlung of photons by electrons.
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In general, the spectrum welghted moments of the mcluswe Cross sectlons Jj +
air — 1, | - T ) '

(5.48)

determine the uncorrelated fluxes of nergetic particles in the atmosphere [197,
198]. For y = 1, it follows from Eq. 5.4 that Z;;(1) is simply the average fraction
of the interaction energy that goes into particles of type i in interactions of particles
of type j. For y > 1 the contribution to the moment from x; — 0 vanishes. Thus,
for a steep primary spectrum, the uncorrelated fluxes depend on the behavior of
the inclusive cross sections only in the forward fragmentation region (x* > 0 in

Eqs. 4.15 and 5.5). This is why the ;™ /™ ratio remains large and greater than 1,

which we will discuss in Chapter 6. It 1s also why Approximation A remains useful

for uncorrelated fluxes of energetic particles, because hadronic scaling (Eq. 5.45)

is more nearly valid in the fragmentation regions than elsewhere.

For later reference, we give here a table (Table 5.2) of spectrum-weighted

moments." This table is ahalogouS to the Table 5.1 for electrons and hotons
Z-factors from Ref. [199] are tabulated for y = 1, ¥ = 1.7 and ¥y = 2.0. For
comparison, we also show the Z-factors at y = 1.7 for the first edition of this
book [200] and for a new version of Sibyll [155]. Since the primary spectrum is
not a perfect power-law over the whole energy region, it is also important to see

how the Z-factors depend on spectral index. This is shown in Figure 5.2 for inte-
gral spectral indexes between y = 1 (momentum fraction) and y = 2.4 (above the
knee).
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Table 5.2 Spectrum-weighted moments at 1 TeV'

Index y =1 y = 1.7 y = 2.0 y = 1.7
p-air Ref. [199] Ref. [200]
79(+n) 0.206 0.0459 0.0279 0.039
T 0.206 0.0489 0.0302 0.046
T 0.156 0.0324 0.0191 0.033
K™ 0.030 0.0071 0.0044 0.0090
K~ 0.018 0.0036 0.0021 0.0028
K; + Kg 0.043 0.0092 0.0054 -
p+p 0.217 0.126 0.107 0.263
n+n 0.114 0.052 0.040 0.035
Index y = 1.7

Sibyll 2.3 [155] p-p p-air Tt -air K " -air
79 (+n) 0.035 0.039 0.054 0.042
T 0.041 0.040 0.206 0.058
T 0.25 0.026 0.043 0.033
K™ 0.0088 0.0083 0.012 0.135
K~ 0.0024 0.0026 0.0061 0.0055
K; +Kg 0.0087 0.0088 0.0018 0.064
p+p 0.253 0.185 0.0096 0.011
n+n 0.089 0.077 0.011 0.0084
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Figure 5.2 Spectrum-weighted moments calculated with Sibyll 2.3 [155]. Shown
is the dependence on the integral index of the power law of the primary protons
interacting with air at 1 TeV.
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PHYSICAL REVIEW D 80, 022002 (2009)

New method to measure the attenuation of hadrons in extensive air showers

The energy reaching the observation level

in the form of hadrons ) Ej is measured with a hadron
calorimeter. The fraction of surviving energy in the form of
hadrons is defined as

E
R = 2 a. (1)
Ey
The attenuation length Ag is then defined as
X
SE, = E, exp(— —) (2)
Ap
or
X
R = - 3
exp( AE> 3)
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FIG. 1 (color online).  Fraction of energy X Ey/E, reaching the
ground in the form of hadrons as a function of estimated primary
energy E, for all data and for selections of light and heavy
primary particles.
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FIG. 4 (color online). Attenuation length Ag as a function of
the estimated primary energy. The light and heavy groups in the
measurements are compared to simulations of showers induced
by primary protons and iron nuclei using CORSIKA with the
hadronic interaction model QGSJET 01 (a) and a modified version
with lower cross sections and higher elasticity [(b), model 3a in
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5.5.2 Fluxes of neutrons and protons

Eq. 5.46 gives the total flux of neutrons plus protons. The corresponding solutions
for n and p separately depend on the four moments

Zyp = Zpyy and Z,, = Z,,. (5.49)

These two independent parameters can be expressed in terms of two independent
attenuation lengths:

Ar =Ay=anv(1—Zyy)""and A_=ax(1—Zpp +Zp)~',  (5.50)

where Zyy = Zpp + Z pn- In Approx1mat10n A, the ratio of neutrons to protons is
[n(X) 10 exp(-X/A%) |
i p(X) 148 exp(—X/A*) '}

Here 89 = (po — no) ( po—l—no) 1“the4re1t1\./e '0 ‘excss at the top of the
atmosphere 'd A*"' V(A-A_). Eq. 5.51 is derived by writing

(5.51)

coupled equations for neutrons and protons and solving them for n(E, X) and
p(E, X) in Approximation A, neglecting production of NN pairs.
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56 Hadrons in the atmosphere

Smce all typesof adrons can be produced when an energetlc hdron of any flavor
interacts, the set of coupled transrt equations represented by Eq. 5.1 is needed to
describe hadron fluxes in the atmosphere in more detail.

A direct way to handle a detailed treatment of particle fluxes is with a Monte
Carlo simulation or a numerical integration of the transport equations. A study of

analytic solutions is useful for qualitative understanding and to check numerical
results. We will also use the analytic forms in Chapter 6 to derive approximate
formulas for the fluxes of atmospheric muons and neutrinos.

For this purpose it is sufficient to look at Eq. 5.1 in the plon—nucleon and kaon—
nucleon sectors, neglecting nucleon—antinucleon productlonas well as the coullg
between pions and kaons and the couplings to other channels. Then we have to
consider only Eq. 5.40 together with a simplified equation for the pion fluxes of
pions and kaons. For example, for the sum of 7t+ and 7T we can write

| (E/x N(E:tsE/xL dx |
}‘-N(E/XL) '

N(E/xp) Fyz(Ex, Ex/xy) dx;
)\N(E/XL) x[%

The eu ns 7 te s rrhe deylent otid from
Eq.5.3
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The relation between altitude and depth 1s shown in Figure 5.1. X 1is the slant
depth along the trajectory of a high-energy particle entering the atmosphere with
zenith angle 6 as seen from the ground. The cascade of particles develops along
the direction of the vector X, and 6* is the local zenith angle at a point along the
trajectory at altitude 4. In general, 6% < 6 because of the curvature of the Earth.
For angles not too large (6 < 657), the flat Earth approximation can be used, and
the distance to the point at 4 is £ = h/ cos 0.

30 10 g/cm2
£ 25 | |
2 20 | -
8 15 4 10°
2 10 -
< 5} .

0 10°

—20 0 20 40 60 80 100

Distance (km)

Figure 5.1 Definition of variables to describe the atmosphere. X is the slant depth,
6™ is the local zenith angle in the atmosphere at slant depth X, and 4 is the local
vertical altitude. Vertical depth (g/cm?) is indicated on the right. The zenith angle
6 at the detector is larger than 6™ because of curvature of the Earth.
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The relation between altitude and depth 1s shown in Figure 5.1. X 1is the slant
depth along the trajectory of a high-energy particle entering the atmosphere with
zenith angle 6 as seen from the ground. The cascade of particles develops along
the direction of the vector X, and 6* is the local zenith angle at a point along the
trajectory at altitude 4. In general, 6% < 6 because of the curvature of the Earth.
For angles not too large (6 < 657), the flat Earth approximation can be used, and
the distance to the point at 4 is £ = h/cos6.

In general, the relation between vertical altitude (4) and distance up the
trajectory (£) is (for £/Rg « 1)

2

1 ¢
h~ ¢ cosf + —— sin> 6, (5.53)
2 Ry

where Rg 1s the radius of the Earth. The corresponding slant depth is

(5.54)

T ) ‘
i X = plh=14¢cosf@ + ———sin“ 6| de.
L i 2 Rg
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The pressure at vertical depth X, in the atmosphere is P = gX v, Where g is the
gravitational constant. The dn51tyls p = —dX, /dh Thus

(5.55)

where the last step follows from the 1deal gas law For dry air with 78.09% nitrogen,
20.95% oxygen and 0.93% argon, M = 0.028964 kg/mol. Rewriting Eq. 5.55 as

din(X,) Mg

= —— 5.56
dh RT (5-26)
leads to an exponential solution for an isothermal atmosphere
(5.57)
with a scale height
i hg = —— = 29.62 m/K x T. (5.58)
| Mg ;

For example, for a typical temperature in the lower stratosphere of 220 K, the scale
height 1s &~ 6.5 km. At sea level the total vertical atmospheric depth 1s Xg =

1030 g/cm?.
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In reality the temperature and hence the scale height decrease with increasing
altitude until the tropopause (12— 16 km). At sea level ho = 8. 4 km, and for 40 <
X, < 200 g/cm?, where production of secondary particles peaks, 7y ~ 6.4 km. A

useful parmetrlzatlon of the relatlon between altltude and vertlcal depth (due to
M. Shlata)’ls' - | | o

| 47.05 — 6.9 InX, +0.299 In* &, X, < 25 g/cm’

b 7, (km) = { 45.5 — 6.34 In X, 25 < X, < 230 g/cm?
' 44.34 — 11.861(X,)%", X, > 230 g/cm?. ;
, o | - 7(5 59) §
The den51ty and atmospherlc depth 1S tabulated as functlon of helght for the US
standard atmosphere [201] in Appendix A.7.

For 6 < 65° the second term in Eq. 5.53 can be neglected, and Eq. 5.54 can be

evaluated to obtain

(5.60)

m,,czho My c2 l

d. Ecr,-,XcosO EX cochrTMg

Eq” 52. "- is in trn'd_eped o_trelatlv size of " cs9nd E 'asm‘mg
X ~ Ay), and similarly for other particles. Since most particle interactions occur
in the first few interaction lengths, we summarize the decay constants for various
particles using the high altitude value of 5y =~ 6.4 km in Table 5.3.
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Decay or 1nteractlon dominates depending on whethr l/d or | [ An 1s larger in
Eq. 5.52. This in turn depends on the relative size of €,/ cos6 and E (assuming
X =& Ar), and similarly for other particles. Since most particle interactions occur
in the first few interaction lengths, we summarize the decay constants for varlous
partlcles usmg the hlgh altltude value of ho > 6 4 km in Table 5.3.

Table 5.3 Decay constants for various particles

Particle cT (cm) € (GeV)
nt 6.59 x 10* 1.0

x¥ 780 115

70 2.5 % 107° 3.5 x 1010
KT 371 850

Ks 2.68 1.2 x 107
K; 1534 208

D+ 0.031 3.7 x 107

DY 0.012 9.9 x 10’
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5.8 Meson fluxes

In the limit that £ » €5, decay can be neglected. Then the scaling limit solution of
Eq. 5.52, subject to the boundary condition IT(E, 0) = 0, is

“n(;_) -

The moments Z(,C are deﬁned n Eq 48 and the attenuatlon lengths are related to
the interaction lengths by

(5.63)

The solution for charged kaons is the same as for charged pions with subscript 7
replaced by subscript K. Interaction and attenuation lengths in the atmosphere are

glven in Table 4 based on cross sections and Z- factors of Slbyll 2 3 [155] see

Table 5 4 Atmospherzc mteractzon and attenuatzon lenths for

& y.
Evp (GeV) AN AN A Ag MK Ak
100 88 120 116 155 134 160
1000 85 115 111 148 122 147
10000 79 106 101 135 110 133
100000 72 07 87 114 05 114
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5.8 Meson fluxes

In the limit that £ » €5, decay can be neglected. Then the scaling limit solution of
Eq 5. Sh, subject to theboundary condltlon‘ H(E O) = 0, is

The moments Z(,C are deﬁned n Eq 5 48 and the attenuatlon lengths are related to
the interaction lengths by

'A-—A-(l—z--)—' | (5.63)

AN Rk

The solution for charged kaons is the same as for charged pions with subscript
replaced by subscrlpt K. Interaction and attenuaton lengths in th tm e are

atmosphere to a max1mum at

X = In(Ax/Ax) x (ANA,,)/(A,r Ay) ~ 140 g/cm f' (5.64)

It then decllnes eventually wnth attenuation length A | Thls behav10r is character-
istic of secondary fluxes in the atmosphere when decay can be neglected.
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Before going on to consider the solutions at lower energy, where decay i1s impor-
tant, it 1s instructive to consider the sum of all hadrons at high energy. Within the
s1mp11ﬁed couplmg scheme we are usmg, the”total flux of hadrons is

ZN‘T Ax (e—X/A_,, _ e_X/AN) "/
| —Zyv Ar — Ay i
(5.65)

+ Zyk Ak (e—X/AK B e—x/A,.v> .
1 — ZNN AK — AN

z = N(E,O)[ /a4

Let us now consider Eq 65 for a very flat spectrum y = L. ThlS corresponds
to the normal solution in electromagnetic cascade theory. Let us further artificially
treat the ¥ as stable instead of feeding its electromagnetic componentW
yy. Then by energy conservation Z,(y = 1) = 1. Also, since in this artificial
example we neglect K — mand K — N, Zggx = land Zyy + Zyz + Znkg = 1.
Thus the expression in square brackets in Eq.

5.65 1s 1, so an incident spectrum
4 preserves 1tself W1thou attenuatlon Note however, that this requires
infinite energy the energy contained in a spectrum 1S

dN
—(r+1)
JE[dE]dE fE[E y+ ]dE, (5.66)

which is logarithmically divergent for y = 1.
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Returning now to the real world, we consider the transport equation for charged

plons at lower energy, where pion decay cannot be negleted Then the scalmg
version of Eq. 5.52 is

€x

dIT/dX = — (— + ' )I'I(E, X) |

Ay  E X cosf

l d.X.'L ;
T JO

L

(5.67)
“N(E,0)e X/Ax,

An explicit approximate expression for the solution can be found if IT(E, X) is
replaced under the integral in Eq. 5.67 by a factorized form which is a product
of E~+1 and a function of depth. The motivation for this trial form is that the
driving source term in Eq. 5.67 is proportional to the nucleon flux, which has the
E—r*+1) dependence on energy.
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With this ansatz Eq. 5.67 becomes

The effect of thls EErox1matlon 1S to represent the 10N_1nte lon and -
eration in Eq. 5. 67 by a single attenuation term W1hattenuat10n len : t The

last term in Eq. 5.68 is the productlon spectrum of pions by nucleons VThexact
solution of Eq. 5.68 is

low- enry 11m1t ,o ‘- 4 / X)e v R \ small ¢ cptr’ ear X.In
this low-energy 11m1t therefore one can set X’ = X in the exponential and Eq. 5.69
becomes

(5.70)
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