~1930 „elementary particles": charged neutral

Rutherford	(1919)	P	n	(1932)	Chadwick
Thomson	(1897)	e-	Y	$(1905 / 26)$	Einstein

Discovery of new particles in cosmic rays

$$
\text { ~1930 - } 1950
$$

birth of elementary particle physics
cloud chamber C.T.R. Wilson Nobel Prize 1927

Nobel Prize 1936

The Positive Electron ${ }^{+}$

Carl D. Andersox, Gaifforwia Insbituto of Technology, Puacudersa, Calijorniz
(Received February 28, 1933)

Fic. 1. A fi3 milliun valt puaitran $i \Pi_{1}-21 \times 10$ grusa-m) pasging through a 6 man lead plate
 is at least ten times greater chan the poasilse length of \& jeotex paltiof this curvature.

1933 Blackett \& Occhialini

10 t electromagnet 30 cm cloud chamber

P.M.S. Blackett
Nobel Prize 1948

pair production

$$
\begin{aligned}
& Y \rightarrow e^{+} e^{-} \\
& \mathrm{E}=\mathrm{mc}^{2}
\end{aligned}
$$

Tig. 9. Pait of positive and negative elexrons produced by gaumes tays, (Chadwick, Blackect, and Occhialini, 1934)

Electromagnetic Cascades B. Rossi 1933

Fly. 7-5 A almwer teveioping thrvugh a number ef brass plates 1.25 em thick flasel arroses alinal sham har. The shower was iritiated in the top place by
 MTT sanals-my griup

Fig. 7-1 Shwwer curve. The number of coincidences per hour is plotted as a function of the thickness of lead above the counters. The experimental arrangement is shown schematically in the inset. The circles are experimental points. ('This figure is based on one appearing in a paper by the author in Zeitschrift für Physik, vol. 82, p. 151, 1933.)

$$
\begin{aligned}
& Y \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \\
& \mathbf{e}^{+--} \rightarrow Y^{2}
\end{aligned}
$$

Discovery of the Muon

1937 Anderson \& Neddermeyer:

$$
\mathrm{m}_{\mu} \sim 200 \mathrm{~m}_{\mathrm{e}}
$$

1939 B. Rossi: life time

life time $\tau \sim 2 \mu s$
$\mu \rightarrow \mathrm{e}+\ldots$

P. Auger et al., Comptes renduz 206 (1938) 1721

coupled „high-altidute rays"

Koinzidenzen je Stunde in Abhängigkeit vom gegenseitigen Ab
Tabelle I. Anzahl der zusätzlichen Koinzidengepanzerten Zählrohre.

Mit zunehmendem Abstand der Zählrohre voneinander imm die Anzahi der Zufallskoinzidenzen zunachst imernd ab, bis sich bei über $10,0 \mathrm{~m}$ Abstand (Beobacht und iiberschüssige Koinzidenzen nicht mehr nachweisbar sind. Wurde ein Bleipanzer ($10 \cdot 10 \cdot 40 \mathrm{~cm}^{3}$) so zwischen die
 Strahles durch die beiden horizontai liegenden Rohre hinderte, so änderte sich wesentlich nichts, wie ja nach der Richtungsverteilung der Höhenstrahlen zu erwarten ist. Wohl aber machten sich die zusätzlichen Koinzidenzen nicht mehr bemerkbar, wenn die Rohre allseitig durch 10 cm Blei geschirmt wurden. Dann erhielt man auch bei nahe aneinanderliegenden Rohren dieselben konstanten Werte für τ wie bei uiber 10 m Abstand ungepanzert. Die zusätzlichen Koinzidenzen mußten demnach von Strahlen herrühren, die durch 10 cm Blei weitgehend absorbiert werden. Bei starker Erhöhung der Stoßzahlen durch radioaktive Bestrahlung wird der Einfluß der Höhenstrahlen unwirksam. Dann ergab sich ebenfalls bei kleinerem Zählrohrabstande (5 m) der Wert des Auflösungsvermögens, der I. nach den elektrischen Daten, 2. nach den Bestimmungen mit allseitigem Panzer und 3. nach den Messungen über 10 m Abstand ungepanzert das wahre Auflösungsvermögen der Anordnung darstellt.
Nur bei statistisch verteilten und voneinander unabhängigen Einzelstößen N_{1} und N_{2} der beiden Zählrohre gilt die Beziehung $K_{z}=2 N_{1} N_{2} \tau$ zur Bestimmung des Auflösungsvermögens τ. Es müssen also bei ungeschirmten und zu nahe

Kolhörster discovery of air showers

würden nach der Geometri bis zu 80° aus ihrer urs worden sein. Indessen ist von nur 1 cm Blei und Strahlen von $\mu_{P b}=0,12 \mathrm{~cm}$ uiberwiegend in der Atmos, Boden erzeugt werden. D bierende als strahlenauslös Freien eine gröBere Anzahl dingungen zu erwarten ist mit der 2 -fach-Koinzidenz die zusätzlichen Koinzider 20 m sicher beobachtet we strahlen im Freien sogar (Tabelle I). Selbst bei 75 Uberschub vorhanden, der reihen sichergestelit werde Aus dem niedrigen Abso dem Boden entstehen, dies dem Boden entstehen, dies
würden dann tuber eine : wurden dann uber eine die räumliche Dichte der die raumliche Dichte der wenn sie als zusätzliche Ko wenn sie als zusätzliche Ko

Strahlen im Schauer. Unter der Decke des Experimentier-
raumes sind diese Sekundärstrahlen über eine Fläche von
mindestens 60 qm sicher n

Neue Messungen der Fluo

Distance d [m]
, koinzideratur, deren Auflösungsvermögen mit einer besonderen Anordnung zu $5 \cdot 10^{-6} \mathrm{sec}$ estimmt worden war. Bei Aufstellung der Zählrohre horizontal und radial auf einem Kreise ist dann überhaupt keine ëorens $0^{-4} \mathrm{Koi} / \mathrm{Std}$.). Es ergaben sich aber bei Zählrohren von 216 qcm wirksamer Fläche

Ungepanzert. $2,7 \pm 0,4 \mathrm{Koi} / \mathrm{Std}$.
W. Kothorister et al., Nâturwiss. 26 (1938) 576

Extensive Air Shower

Proton $10{ }^{15} \mathrm{eV}$:
~ 1950 large detector arrays

Fig. 12-4 Shower disk approaching detectors (represented by circles on a horizontal plane).

Fig. 12-3 Experimental arrangement used hy the MTT exsmie-ray group to etudy air ehowers. Fluorescent plastis disks (thin rectungles ot top) emit flashes of light, when struck by ctharged partictes. At the oenter of each disk is a photomoltiplier tube that converts the light innsan electrical pulse; the auoplitude of the pulss is proportional to the brightress of the flash. Puleses trnvel to cathude-ray uecilluscoptes (éredew) through tramsenission lines conntaining delay carconita, which exualize the lenglites of the eflectrizal paths. Horizontal swesps of all cocilloscope seresens (grids) are triggened at the same time whemever three or more pulees pass through the cximeidetiee sincmit simaltaneomsly. The amplitudes of the "spikes" (Huat is, the heights of the vertioal detleetions in the oscillorocope tranas) indinate the nurribers of particiles strikiug the corresponiting detentors. The positions of the gpikes in the horizontal traces ahow the relative arrival times of the purtieliss.

EVIDENCE FOR A PRIMARY COSMIC-RAY PARTICLE WITH ENERGY $10^{20} \mathrm{eV} \dagger$

John Linsley

Iaboratory for Nuclear Science, Massachusetts Institute of Technnlogy, Cambridge, Massachusetta
(Rcecived 10 January 1963)

Fic. 1, Plan of the Volemo Ranch array in Pahruary 1082. The circies represent $3.3-\mathrm{m}^{2}$ scintillation deteotore. The numbers near the ctrcles are the shower demaitics (pertleles $/ \mathrm{m}^{2}$) registerem in this avent, No. 2-4814. Fornt " A " is the estimated lnewtimn of the shower core. The circular oontours about thet point aid in verifying the cxare location by inspection.

1943

The
 University of Chicago

Fig. 1. Participants at the Cosmic Ray Conference (Symposium on Cosmic Rays, 1939) convened at the University of Chicago in the summer of 1939. The identifjcation of participants is given by numbers in the over lay of this photograph as follows:

1. H. Bethe	18. W. Bothe	35. W. Bustick ${ }^{+}$	
2. D. Froman	19. W. Heisenherg	36. C. Eckart	
3. R. Brode	20. P. Auger	37. A. Code ${ }^{+}$	
4. A.H. Compton	21. R. Serber	38. J. Stearns (Denver?)	
5. E. Teller	22. T. Johnson	39. J. Hopfield	
6. A. Baños, Jr.	23. J. Clay (Holland)	40. E.O. Wollan ${ }^{*}$	
7. G. Groetzinger	24. W.F.G. Swann	41. D. Hughes ${ }^{+}$	
8. S. Goudsmit	25. J.C. Street (Harvard)	42. W. Jesse*	
9. M.S. Vallarta	26. J, Whecler	43. B. Hoag	
10. L. Nordheim	27. S. Neddermeyer	44. N. Hillberry ${ }^{+}$	
11. J.R. Oppenheimer	28. E. Herrog (?)	45. F. Shonka ${ }^{+}$	ICS
12. C.D. Anderson	29. M. Pomerantz	46. P.S. Gill ${ }^{+}$	
13. S. Forbush	30. W. Harkins (U. of C.)	47. A.H. Snell	Mama
14. Nielsen (of Duke U.)	31. H. Reutler	48. J. Schremp	
15. V. Hess	32. M.M. Shapiro ${ }^{+}$	49. A. Haxs? (Vienna)	こ RAYS
16. V.C. Wilson	33. M. Schein*	50. E. Dershem*	
17. B. Rossi	34. C. Montgomery (Yale)	51. H. Jones ${ }^{+}$	

*Then research associate of Compton.
+Then graduate student of Compton.

Die Wellraumstrahlung und ihre biologische Wirkung

Dic Kosmischen Strahlen, vor ca. 30 Jahren dunt HFSS entdeekt, und heute schon photographisr- und meBhar, beciaflusem narhhalig Wethstuna, Fruchtharktit und Krets, was ELigSTER in langjährigen Versuchen an Tiaren und Pflanzen bswies. Das Buch gibe Chysihern und Dialugen, aher auch gebilderen-Laien sine wertvolle Zusammenfassung der außarst vickecitiger. Fofachungsergelmisec.

emulsion

 chambers at high-altitude lab above Innsbruck (Austria)Disintegration Processes by Cosmic Rays with the Simultaneous Emission of Several Heavy Particles
On photographic plates which had been exposed to cosmic radiation on the Hafelekar ($2,300 \mathrm{~m}$. above sea-lovel) near Innsbruck for five months, we found, apart from the very long tracks (up to $1,200 \mathrm{~cm}$. in length) which have been reported recently in a not
in the Wiener Akademie-Berichte, evidence of seve in the Wiener Akademie-Be
processes described below.
From a single point within the emulsion seve tracks, somo of them having a considerable leng take therticles four with four and 'stars' with s even, icht and nine particles, one of each kind The longest track corresponded to a range in $15^{\circ}, 760 \mathrm{~mm} . \mathrm{Ho}$) of 176 cm . The ionization p duced by the particles is different in the diffor cases. Most of the tracks show much larger me grain-distances than α-particles and slow protons. In Fig. 1 a 'star' with eight tracks is reproduce On account of the rather steep angles at which sol of the particles cross the emulsion-layer (appro mately 70μ thick) it is not possible to have all t tracks of a 'star' in focus simultaneously. Fig. shows a sketch of the same 'star'. Measurement the tracks gives the results in the accompany table.

Track	Length in cm . of $\operatorname{air}\left(15^{\circ}, 760 \mathrm{mma}\right.$.)	Number of grains	Position of the end of the track
A	30.0 cm .	113	Within the emulsion
B	11.0 ,	15	
c	44.6 ,	71	Glass
D	$6 \cdot 2$ "	11	"
E	7.0 "	22	
F	1.2 13.6	67	
${ }_{H}^{G}$	13.6 28.9	67 58	Surface of the emulsion Glass

[^0]We believe that the process in question is a disintegration of an atom in the emulsion (probably Ag or Br) by a cosmic ray. The striking feature
\qquad
bout it is the simultaneous emission of so many heavy particles with such long ranges, which excludes any confusion with stars due to radioactive conchance is equally out of question. Brode and others ${ }^{1}$

Disintegration Processes by Cosmic Rays with the Simultaneous Emission of Several Heavy Particles

bserved a singlo case of a disintegration with three heavy particles in a Wilson cloud chamber. The phenomenon which Wilkins believes was a shower of protons is perhaps a similar process, but he did not observe a centre ${ }^{2}$
 dem pipteren Austian.

\longrightarrow.

M. Btaf.
H. Wambacher.

Radium Institut

u. 2 Physik. Institut, Wien. Aug. 25.

Track, AN dNTERRUPTED LINE means that the
track is too Long to be reepoduced on the same scale. The arrows indicate the dirzoction pr

THE SURFAGE OF THE EMUISION TO THE GI
The total energy involved in the pro ws cannot as yet be calculated as most of the p. ncles do not end in the emulsion.
We hope to give further detail wefore long in the Wiener Akademie-Berichte. M. Blad.
H. Wambacher.

Radium Institut
11. 2 Physik. Institut, Wien.
Aug. 25.
${ }^{1}$ Brode, R. I and others, Phys. Rev, 50, 581 (October, 1986) ${ }^{1}$ Brode, R. L., and others, Phys. Rev., 50, 581 (Oetober, 1936).

Tracks of Nuclear Particles in Photographic Emulsions

Maurice M. Shapiro
Ryerson Laboratory, University of Chicago, Chicago, Illinois

Contents

I. Early history of the direct photographic method 58
II. Nature of the photographic technique-its advantages and limitations 61
III. Contributions of the photographic method in the field of cosmic rays 63
IV. Contributions of the photographic method to other problems in nuclear physics 68

1947 Discovery of the Pion

Fig. 9-4 Photomicrograph of tracks in a nuclear emulsion, showing a π meson (π) that comes to rest and decays into a μ meson (μ). The μ meson in turn comes to rest and decays into an electron (e). (From R. H. Brown, U. Camerini, P. Fowler, H. Muirhead, C. F. Powell, and D. M. Ritson, Nature, vol. 163, p. 47, 1949.)

$$
\mathrm{m}_{\pi} \sim 280 \mathrm{~m}_{\mathrm{e}}
$$

C.F. Powell

Nobel Prize 1950
Pion: nuclear interaction
decay $\mathrm{\Pi}^{+/-} \rightarrow \mu^{+/-} \rightarrow \mathbf{e}^{+/-}$

$$
\Pi^{0} \rightarrow Y Y
$$

End 1940s plastic balloons

 krgh of akout rao at and moct of the fabric is on tine ground. Suer a bn loon can in
 of 42 kg .

1941 protons (M. Schein) 1948 heavy nuclei (Brandt \& Peters)

Fig. 2. Examples of the tracks in phosografhic emustons of pmmary nacles of the cosmic ralixion mozing it melaivistic velocities.

The Cosmic-Ray Counting Rate of a Single Geiger Counter from Ground Level to 161 Kilometers Altitude

J. A. Van Alegk and H. E. Tater.*

Applied Pikysies Labaralary, Johms Hapkins Univatsily, Sifos Sprintg, Matyland
(Received October 16, 1947)

Cosmic-Ray Detection on Board of a REXUS Rocket

Jochem Beurskens

Figure 1.6: A schematic view of an intersection of the CubeSat cosmic-ray detector. Some cosmic-rays pass through the scintillator, but others are absorbed. Light emitted by the scintillator can then be detected by the light sensitive MPPCs at the bottom. The optical fibers increase the amount of light that is guided towards th MPPCs, thereby decreasing the amount of energy absorbed that remains undetected. The black outer rim represents the tape that covers the entirety of the cosmic-ray sensor, so that no outside light sources can cause misfires in the MPPCs.

Figure 2.3: The PR3 module, without the outer rim. The circled gray box is the CubeSat cosmic-ray detec And the PR3 module in the rocket.

Cosmic-Ray Detection on Board of a REXUS Rocket

3.2.2 Counts and Altitudinal Profile

Using the altitude data, from the combination of REXUS 25 and REXUS 26, together with the measured counts for the cosmic radiation a cosmic-ray count rate versus altitude graph is reconstructed. This is done in order to get a look at the shape of the Pfotzer maximum, from which the ratio of high and low energy particles can roughly be estimated.

Figure 3.5: Altitude versus count rate. As the GPS data for the REXUS 25 flight cut-off around 80 km altitude this part of the flight has been fitted separate from the descent part of the flight, which was mainly made with GPS data from REXUS 26. A square root of N error for both the ascent and descent fit is added as the shaded areas.

Stars and Heavy Primaries Recorded during a V-2 Rocket Flight

Herman Yagoda, Hervasio G. de Carvalho,* and Nathan Kaplan Laboratory of Physical Biology, Experimental Biology and Medicine Institute, National Institutes of Health, Bethesda, Maryland
(Received February 23, 1950)

Plates flown to an altitude of 150.7 km in a V - 2 rocket exhibit a differential star population of 5000 ± 800 per cc per day and a flux of heavy primaries of about $0.03 \mathrm{per}^{\mathrm{cm}}$ per min . above the stratosphere. The star intensity is about 3.6 times greater than that recorded by plates exposed in the stratosphere, the increment being attributable to secondary star forming radiations created by interaction of cosmic-ray primaries with the massive projectile. The flux of heavy primaries is essentially of the same order of magnitude as reported for elevations of 28 km .

Fig. 1. Cross section of plate holder. A. Aluminum jacket 3 mm thick. B. Sponge rubber packing. C. Plates assembled with emulsion layers adjacent to each other. D. Rubber gasket.

[^1]

1953 Cosmic-Ray Conference

birth of particle physics

particles discovered in cosmic rays:

- 1932 e $^{+}$Anderson
- 1937μ Anderson/

Neddermeyer

- 1947π Lattes, Occhialini, Powell
- 1947 K Rochester,

Butcher, Powell

- 1951-53 hyperons
$\Lambda \Xi \Sigma$

Rocket Determination of the Ionization Spectrum of Charged Cosmic Rays at $\lambda=41^{\circ} \mathrm{N}$

G. J. Perlow,* L. R. Davis, C. W. Kissinger, and J. D. Shipman, Jr.
U. S. Naval Research Laboratory, Washington, D. C.
(Received June 30, 1952)
In a V-2 rocket measurement at $\lambda=41^{\circ} \mathrm{N}$ an analysis has been made of the various components of the charged particle radiation on the basis of ionization and absorption in lead. The ionization was determined by two proportional counters, the particle paths through which were defined by Geiger counters. With increasing zenith angle toward the north, the intensity is found to be substantially constant until the earth ceases to cover the under side of the telescope. The intensity of all particles with range $\geq 7 \mathrm{~g} / \mathrm{cm}^{2}$ is $0.079 \pm 0.005\left(\mathrm{~cm}^{2} \mathrm{sec} \text { steradian }\right)^{-1}$. Of this an intensity 0.012 ± 0.002 is absorbed in the next $14 \mathrm{~g} / \mathrm{cm}^{2}$. The ionization measurement is consistent with $\frac{3}{4}$ of these soft particles being electrons of $<\sim 60 \mathrm{Mev}$, the remainder being slow protons and alpha-particles. For the particles with greater range an ionization histogram is plotted, the smaller of the two ionization measurements for a single event being used to improve the resolution. The particles divide into protons, alpha-particles, and one carbon nucleus, with $N_{p} / N_{\alpha}=5.3 \pm 1.0$. Their absorption is exponential with mean free path $440 \pm 70 \mathrm{~g} / \mathrm{cm}^{2} \mathrm{~Pb}$. Extrapolating to zero thickness, the total primary intensity is $0.070 \pm 0.005\left(\mathrm{~cm}^{2} \mathrm{sec} \text { steradian }\right)^{-1}$ with 0.058 ± 0.005 as protons, 0.011 ± 0.002 as alpha-particles, and 0.001 ± 0.001 as $Z>2$.

Fig. 1. Diagram of telescope.

Fig. 6, Absorption in lead of the total radiation.

Van Allen Belts

I. Gosmic ray burst delector.
a. Vertical telescope.
3. and or Dynamotor power supply aud fight batterics.
5. Magnetic oricntor for deremmining dirratics of ruckel axis with respect to earth's magnetic farlil.
6, $夕, \frac{8}{}$ and to, Gejper coumrar coincidenos: cirnuits, telemesering circuits and rarlio telametsining tratmernilter.
g. Horizontal teleximple.
11. 45^{2} telescapes.
12. Phockeell urienter to determine angle of rocket axis with the wolar vectar.
[y, Conaxial cable to telemetering anterna 1.1.

Frc. 92. Experimkntal. arkancement dor Aerobee rexwhe bosajo ray bxpehtuzate of van Athan ano SmaEr.

Van Allen Belts

Radiation Around the Earth to a Radial Distance of $107,400 \mathrm{~km}$.

JAMES A. VAN ALLEN \& LOUIS A. FRANK

Fig. 71. The arrangement of radiation detectors in Pioneer IV. (After van Allen).

173

Fig. 69. The distribution of intensity in the radiation belts. (6 dec. 1958). The diagram represents a cross section through a meridian plane. $R_{e}(\sim 6400 \mathrm{~km})$ is the radius of the earth.
(After van Allen and Frank, Nature, $\mathbf{1 8 3}, 430$ (1959)).

Fig. 70. A comparison of the intensities of radiation found with nearly The trajectories identical counters in Pioneer III and Pioneer IV.
of the second belt the readingse were almost, but not quite, the same. At the peak followed either curve A or curve B. Curve A is more probable. (After zan Allen and Frank, Nature 184, 219 (1960)),

Formation of the chemical composition

Relative abundance of elements at Earth

abundance of elements in CRs and solar system mostly similar
but few differences, e.g. Li, Be, B $->$ important to understand propagation of cosmic rays in Galaxy \rightarrow column density of traversed matter
primary cosmic rays generated at source e.g. p, He, Fe
spallation products \rightarrow secondary cosmic rays, e.g. Li, Be, B

THE AGE OF THE GALACTIC COSMIC RAYS DERIVED FROM THE ABUNDANCE OF ${ }^{10} \mathrm{Be}^{*}$
M. Garcia-Munoz, G. M. Mason, and J. A. Simpson \dagger

Enrico Fermi Institute, University of Chicago Keceined i977 March 14; accepted 1977 April 21

Fia. 1.-Cross soction of the IMP-7 and IMP-8 telescopes. D11. D2, and D3 are lithium-drifted silicon detoctors of thickocss 750 , 1450 , and $800 ~ u m$, respectively, 124 is an $11.5 \mathrm{~g} \mathrm{~cm}^{-8}$ thick CII (T1) scintillator viewed by four photodioties. D5 is a sapphire scintillator/Cerenkov radintor of thiskness $3.98 \mathrm{~g} \mathrm{~cm}^{-2}$, and D6 is a plastic scintillation guard counter viewed by a photomultiplier tube. Asterisks denote detectors whose outpat is pulse-leight analyzed.
calibration

$$
{ }^{10} \mathrm{Be} \rightarrow{ }^{10} \mathrm{~B}+\mathrm{e}^{-}\left(\tau=2.410^{6} \mathrm{a}\right)
$$

$\tau=17^{*} 10^{6} a$

Isateaic Anelys © Mcss Histogrom of Golactit Gosmic Rop, Be (11.5P-7+ (MP-8 dotal
cosmic pi) rays

Composition of Cosmic-Ray Nuclei at High Energies*

Path length of cosmic rays

Einar Juliugson, Peter Meyer, and Dietrich Müller

Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinots 60637
(Received 26 May 1972)
We have measured the charge composition of oosmic-ray nuclei from Li to Fe with encrgies up to about $100 \mathrm{GeV} / \mathrm{nu} \mathrm{g}_{\mathrm{e}} \mathrm{on}$. A balloon-borne counter telescope with gas Cherenkov counters for energy determination was used for this experiment. Our first resulta show that, in contraat to low-energy obacrvations, the relative abundnnees change as a function of energy. We find that the ratio of the ralactic secondary nuclet to primary-source nuclei decreases at energies above about $30 \mathrm{GeV} / \mathrm{nucleon}$.

$\mathrm{g} / \mathrm{cm}^{2}$

spallation

B/C-ratio

$C \rightarrow B+n+p$

Origin of Cosmic Rays?

1927 R.A. Millikan: „death cries of atoms"
1933 Regener: E density in CRs ~ E density of B field in Galaxy
1934 Supernovae

1949 E. Fermi: acceleration at magnetic clouds

1978 R.D. Blanford, J.P. Ostriker: acceleration at strong shock front (1st order Fermi acceleration)

Beyond the boundaries of our Solar System

passage through termination shock ended Voyager 1: 94 AU, December 2004 Voyager 2: 84 AU, August 2007
February 2012: Voyager 1: 119.7 AU from Sun Voyager 2: 97.7 AU from Sun
Voyager 2: 20 August 1977 $\Delta T=c d \approx 17 \mathrm{~h}$ Voyager 1: 5 September 1977 Kenedy Space Center

Galactic Cosmic Rays and the Heliosphere

August 25th, 2012 Interstellar Space

[^0]: Centre of the 'star' 25μ under the surface of the emulsion

[^1]: Fig. 3. Nuclear evaporation recorded in one of the rocket plates.

