Astroparticle Physics

2023/24

Wednesday 8:30-10:15 HG 03.054
Thursday 15:30-17:15 HG 03.082

- lectures
- student presentations
- oral exam, ca. 45 min

Jörg R. Hörandel
HG 02.728
j.horandel@astro.ru.nl
http://particle.astro.ru.nl/goto.html?astropart2324

Particles and the Cosmos

CRs underground (lecture 12) neutrino oscillations (lecture 12+13)

Origin of cosmic rays multi messenger technique

RESEARCH ARTICLE SUMMARY

NEUTRINO ASTROPHYSICS

Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

The IceCube Collaboration, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift/NuSTAR, VERITAS, and VLA/17B-403 teams* \dagger

INTRODUCTION: Neutrinos are tracers of cosmic-ray acceleration: electrically neutral and traveling at nearly the speed of light, they can escape the densest environments and may be traced back to their source of origin. Highenergy neutrinos are expected to be produced in blazars: intense extragalactic radio, optical, x-ray, and, in some cases, γ-ray sources characterized by relativistic jets of plasma pointing close to our line of sight. Blazars are among the most powerful objects in the Universe and are widely speculated to be sources of high-energy cosmic rays. These cosmic rays generate high-energy neutrinos and γ-rays, which are produced when the cosmic rays accelerated in the jet interact with nearby gas or photons. On 22 September 2017, the cubic-kilometer IceCube Neutrino Observatory detected a $\sim 290-\mathrm{TeV}$ neutrino from a direction consistent with the flaring γ-ray blazar TXS $0506+056$. We report the details of this observation and the results of a multiwavelength follow-up campaign.

RATIONALE: Multimessenger astronomy aims for globally coordinated observations of cosmic rays, neutrinos, gravitational waves, and electromagnetic radiation across a broad range of wavelengths. The combination is expected to yield crucial
mic rays. The discovery of an extraterrestrial diffuse flux of high-energy neutrinos, announced by IceCube in 2013, has characteristic properties that hint at contributions from extragalactic sources, although the individual sources remain as yet unidentified. Continuously monitoring the entire sky for astrophysical neu-

Multimessenger observations of blazar TXS 0506+056. The
trinos, IceCube provides real-time triggers for observatories around the world measuring γ-rays, x-rays, optical, radio, and gravitational waves, allowing for the potential identification of even rapidly fading sources.

RESULTS: A high-energy neutrino-induced muon track was detected on 22 September 2017, automatically generating an alert that was distributed worldwide within 1 min of detection and prompted follow-up searches by telescopes over a broad range of wavelengths. On 28 September 2017, the Fermi Large Area elescope Collaboration reported that the direction of the neutrino was coincident with a cataloged γ-ray source, 0.1° from the neutrino direction. The source, a blazar known as TXS $0506+056$ at a measured redshift of 0.34 , was in a flaring state at the time with enhanced γ-ray activity in the GeV range. Follow-up observations by imaging atmospheric Cherenkov telescopes, notably the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes, revealed periods where the detected γ-ray flux from the blazar reached energies up to 400 GeV . Measurements of the source have also been completed at x-ray, optical, and radio wavelengths. We have investigated models associating neutrino and γ-ray production and find that correlation of the neutrino with the flare of TXS 0506+056 is statistically significant at the level of 3 standard deviations (sigma). On the basis of the redshift of TXS 0506+056, we derive constraints for the muon-neutrino luminosity for this source and find them to be similar to the luminosity observed in γ-rays.

CONCLUSION: The energies of the γ-rays and the neutrino indicate that blazar jets may accelerate cosmic rays to at least several PeV. The observed association of a high-energy neutrino with a blazar during a period of enhanced γ-ray emission suggests that blazars may indeed be one of the long-

Follow-up of GW170817 with PAO (neutrinos)

Follow-up of GW170817 with PAO (neutrinos)

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 2017. The American Astronomical Society. All rights reserved.

Multi-messenger Observations of a Binary Neutron Star Merger

LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-Hxmt Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3 and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South

Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auge Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT (See the end matter for the full list of authors.)

Follow-up of GW170817 with PAO (neutrinos)

Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817
with ANTARES, IceCube, and the Pierre Auger Observatory
ANTARES Collaboration, IceCube Collaboration, The Pierre Auger Collaboration, and LIGO Scientific Collaboration and Virgo Collaboration

PAO in pre-defined +/- 500 s

 window as sensitive as IceCubeGW170817 Neutrino limits (fluence per flavor: $\nu_{x}+\bar{\nu}_{x}$)

A\&A 619, A71 (2018)

Astronomy
 Astrophysics

The γ-ray spectrum of the core of Centaurus A as observed with H.E.S.S. and Fermi-LAT

ABSTRACT

Centaurus A (Cen A) is the nearest radio galaxy discovered as a very-high-energy (VHE; $100 \mathrm{GeV}-100 \mathrm{TeV}$) γ-ray source by the High Energy Stereoscopic System (H.E.S.S.). It is a faint VHE γ-ray emitter, though its VHE flux exceeds both the extrapolation from early Fermi-LAT observations as well as expectations from a (misaligned) single-zone synchrotron-self Compton (SSC) description. The latter satisfactorily reproduces the emission from Cen A at lower energies up to a few GeV . New observations with H.E.S.S., comparable in exposure time to those previously reported, were performed and eight years of Fermi-LAT data were accumulated to clarify the spectral characteristics of the γ-ray emission from the core of Cen A. The results allow us for the first time to achieve the goal of constructing a representative, contemporaneous γ-ray core spectrum of Cen A over almost five orders of magnitude in energy. Advanced analysis methods, including the template fitting method, allow detection in the VHE range of the core with a statistical significance of 12σ on the basis of 213 hours of total exposure time. The spectrum in the energy range of $250 \mathrm{GeV}-6 \mathrm{TeV}$ is compatible with a power-law function with a photon index $\Gamma=2.52 \pm 0.13_{\text {stat }} \pm 0.20_{\text {sys }}$. An updated Fermi-LAT analysis provides evidence for spectral hardening by $\Delta \Gamma \simeq 0.4 \pm 0.1$ at γ-ray energies above $2.8_{-0.6}^{+1.0} \mathrm{GeV}$ at a level of 4.0σ. The fact that the spectrum hardens at GeV energies and extends into the VHE regime disfavour a single-zone SSC interpretation for the overall spectral energy distribution (SED) of the core and is suggestive of a new γ-ray emitting component connecting the high-energy emission above the break energy to the one observed at VHE energies. The absence of significant variability at both GeV and TeV energies does not yet allow disentanglement of the physical nature of this component, though a jet-related origin is possible and a simple two-zone SED model fit is provided to this end.

Fig. 3. SED of Cen A core with model fits as described in text. The red curve corresponds to an SSC component designed to fit the radio to sub-GeV data. The blue curve corresponds to a second SSC component added to account for the highest energy data. The black curve corresponds to the sum of the two components. SED points as derived from H.E.S.S. and Fermi-LAT data in this paper are shown with open circles. Observations from the radio band to the $\mathrm{MeV} \gamma$-ray band are from TANAMI (\diamond), SEST (Δ), JCMT (\triangleright), MIDI (∇), NAOS/CONICA (\downarrow), NICMOS (ㅁ), WFPC2 ($)$, Suzaku (\triangle), OSSE/COMPTEL (■). The acronyms are described in Appendix B.

Jörg R. Hörandel, APP 2023/24

Observation of a large-scale anisotropy in the arrival directions of cosmic

 rays above $8 \times 10^{18} \mathrm{eV}$The Pierre Auger Collaboration* ${ } \dagger$

Anisotropy detected at >5.2 sigma dipole amplitude 6.5\%

BREAKTHROUGH

Fig. 3. Map showing the fluxes of particles in galactic coordinates. Sky map in galactic
coordinates showing the cosmic-ray flux for $E \geq 8 \mathrm{EeV}$ smoothed with a 45° top-hat function. The galactic center is at the origin. The cross indicates the measured dipole direction; the contours denote the 68\% and 95\% confidence level regions. The dipole in the 2MRS galaxy distribution is indicated. Arrows show the deflections expected for a particular model of the galactic magnetic field (8) on particles with $E / Z=5$ or 2 EeV .

Astroparticle Physics messengers from the Universe

gamma rays

3-K microwave background
dark matter

Literature

Particles \& Cosmos: Stanev

Astroparticle Physics:
Tom Gaisser, Cosmic rays and particle physics
Cambridge University Press (2016)

+ primary literature (journal articles)

Astroparticle Physics

 2023/241. Historical introduction-basic properties of cosmic rays
2. Hadronic interactions and accelerator data
3. Cascade equations
4. Electromagnetic cascades
5. Extensive air showers
6. Detectors for extensive air showers
7. High-energy cosmic rays and the knee in the energy spectrum of cosmic rays
8. Radio detection of extensive air showers
9. Acceleration, Astrophysical accelerators and beam dumps
10. Extragalactic propagation of cosmic rays
11. Ultra-high-energy energy cosmic rays
12. Astrophysical gamma rays and neutrinos
13. Neutrino astronomy
14. Gamma-ray astronomy

Student talks

- Students will present selected topics, based on journal publications.
- Learn how to derive information from primary literature.
- Presentation followed by discussion and questions.
- 60 min presentation, 15 min discussion
- You are expected to participate in discussions and ask questions.
- Your presentation + interaction will be part of your grade.

Student talks

- Air showers - Matthews Heitler model
- Radio detection of air showers
- CR anisotropy at TeV energies, IceCube/Top, HAWC
- the knee in the energy spectrum of cosmic rays
- Detectors for UHE CRs, Auger, TA
- GZK effect and the end of the CR spectrum, Auger, TA
- CR mass composition at highest energies, Auger, TA
- CR anisotropy at highest energies, Auger, TA
- IceCube project + results (neutrino)
- KM3NeT project + results (neutrino)
- H.E.S.S. project and results (gamma ray)
- Fermi satellite project and results (gamma ray)
- Cherenkov Telescope Array - CTA
- Origin of the heavy elements from GW events
- Cosmic magnetic fields

lecture 1

Historical introduction Basic properties of Cosmic Rays

Discovery of Radioactivity

Henri Becquerel
Marie \& Pierre Curie

Ein neues Elektrometer für statische Ladungen.

a new electrometer for static charges

Mitteilung enthält einige her beschriebenen Appaöhung seiner Transport-

Sir J.J.Thomson Nobel Prize 1906

Conduction of electricity through gases (1928):
It would be one of the romances of science if these obscure and prosaic minute leakages of electricity from well-insulated bodies should be the means by which the most fundamental problems in the evolution of the cosmos came to be investigated.

"the continuous production of ions in dust-free air could be explained as being due to radiation from sources outside our atmosphere, possibly radiation like Röntgen rays or cathode rays, but of enormously greater penetrating power"
C T R Wilson, Proc Roy Soc A 68 (1901) 151

Detector used by Wilson to investigate ionization of air

Physikalische Zeitschrift. 10. Jahrgang. No. 25. (i909)

Tabelle 1 .
Strahlung der Wande von Gebauden.

0 Ot	Material	Alter	$\begin{gathered} \text { Strahiung } \\ \text { Ienon } \\ \text { per com } \\ \text { u. Sckunde } \end{gathered}$
Abtei Maria Thandh bei Ancernach: Rb .	$\left\{\begin{array}{l} \text { Vulkanisch } \\ \text { Tuf } \end{array}\right.$	50 Jahre	13.7
Valkenburg, Collag, Holland-L.	Ziegelsteize		3,
Löweu, Colleg, Eupriea	Ziegelsteine)	3,0
Namur Coley N.D. ile la paix, Belgien.	Ziegelsteinc	ca. 100	3%
Wyuerdsrade Kasteel, Holl-nd	Ziegalsteine.		

Nur in dem alten holländischenKasteel Wynandsrade, vor fast 200 Jahren aus Ziegelsteinen erbaut, zeigte sich kein Unterschied in det Strahlung im Zimmer und im Freien. - Am stärksten war dic Strahlung in Maria Laach in cinem

Man kann den Inhalt dieser Arbeit kurz so zusammenfassen. Es wird tiber Versuche berichtet, welche beweisen, daB an dem Beobachtungsort die durchdringende Strablung von primär radioaktiven Substanzen verursacht wird, welche in den obersten Erdschichten liegen, bis etwa I m unter der Oberfläche.

Wenn ein Teil der Strahlung aus der At mosphäre stammt, so ist er doch so klein, daß er: sich mit den gebrauchten Mitteln nicht $\frac{\text { nachweisen liels. }}{\text { Die geitlichen a }}$ enkunorn in dar γ Strahlung the radiation originates eben
the radiation originates from the soil
maybe a small contribution from the atmosphere

Theodor Wulf

1909: Soddy \& Russel: attenuation of gamma rays follows an exponential law

$$
I=I_{0} e^{-\mu L}
$$

Discovery of Cosmic Rays Viktor Franz Hess 7. Auigust 1912

Early cosmic-ray work published in German

Jörg R. Hörandel

Citation: AIP Conf. Proc. 1516, 52 (2013); doi: 10.1063/1.4792540

FIGURE 1. Left: Electrometer after Th. Wulf [5]. Right: Two grandsons of V.F. Hess revealing a plaque to commemorate the discovery of cosmic rays on August 7th, 2012, close to the presumed landing site of V.F. Hess in Pieskow close to Berlin. It reads: "To commemorate the discovery of cosmic rays. On 7 August 1912 landed the Austrian physicist Victor F. Hess with a hydrogen balloon close to Pieskow. On the journey from Lower-Bohemia he reached an altitude of 5300 m and he proved the existence of a penetrating, ionizing radiation from outer space. For the discovery of cosmic rays V.F. Hess has been awarded the Nobel Prize in Physics in 1936. The participants of the symposium '100 years cosmic rays', Bad Saarow-Pieskow, 7 August 2012".

Aeronautisches Gelünde jom Wiener Pratet, vo seine ersten Freiballon-Forschungsfahrten in soluichtliche Mu

Aus der Abteilung für Geophysik, Meteorologie und Erdmagnetismus:
ViktorF.Hess(Wien), Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten.
Im Vorjahre habe ich bercits Gelegenheit gehabt, zwei Ballonfahrten zur Erforschung der durchdringenden Strahlung zu unterneh-
7. Fahrt (7. August 1912).

Ballon: „Böhmen" (I 680 cbm Wasserstoff).
Meteorolog. Beobachter: E. WV If.

on the observation of the penetrating radiation during 7 balloon campaigns

Aus der Abteilung für Geophysik, Meteorologie und Frdmagnetismus:
ViktorF.Hess(Wien), Über Beobachtungen der durchdringenden Strahlung bei sieben

V.F. Hess in 1936-37. on the occasion of Nobel prize.

Nobel Prize 1936

erwcitertcs Beobachtungsmateriab. wurde
der Atmosphäre zurückzuführen.
Die Ergebnisse der vorlicgenden Beobachtungen scheinen am ehestendurch die Annahme erklärt werden zu können, daß eine Strahlung von sehr hoher Durchdringungskraft von oben her in unsere Atmosphäre eindringt, und auch noch in deren untersten Schichten einen Teil der in geschlossenen GefäBen beobachteten Ionisation hervorruft. Die Intensität dieser Strahlung scheint zeit lichen Schwankungen unterworfer zu sein, welche bei einstundigen $A b$. lesungsintervallen noch erkennbar sind. Da ich im Ballon weder bei Nacht noch bei einer Sonnenfinsternis eine Verringerung der Strahlung fand, so kann man wohl kaum die Sonne als Ursache dieser hypothetischen Strahung ansehen, wenigstens solange man nur an eme.ditekte γ Strahlung mit geradliniger Fortpflanzung denkt.

Daß die Zunabme der Strahlung erst jenseits 3000 m so stark merlich wird ist nicht

Neue Untersuchungen über die durchdringende Hesssche Strahlung.

Von E. Steinke in Königsberg i. Pr.

Absorption in the atmosphere
for different altitud k
 Fig. 9. Richtungsverteilung der durchdringenden Strahlur
kurve gibt die beobachteten Werte an kurve gibt die beobachteten Werte an. Ferner bedeute und $0,05{ }^{\prime \prime} \mathrm{cm}^{-1}$ " und $0,05 \mathrm{~cm}^{-1}$ zusamm

atmospheric averburden
Intensität der durchdringenden Strahlung in Abhängigkeit von der Absorptionsschicht.

Über Schwankungen und Barometereffekt der kosmischen Ultrastrahlung im Meeresniveau.

Von E. Steinke in Königsberg i. Pr.

Barom effect

Während c stunden av Dicke, teil material e teils perio Schwanku dische Sch mäßige In endlich pe während c kungen, is für das Av zeitlichpn

Fig. 4. Zusammenhang zwischen Barometerstand und Ionisation (Jahresmittel der Stundenwerte; die Zahlen geben die Anzahl der Stundenwerte an).

رith
ect
n of

Absorption in Lake Constance 1928

Fig. 日. Die ssthwebentia Verankernig des Appacates.

E. Regener Phys. Z. 34 (1933) 306 Jörg R. Hörandel, APP 2023/24

Absorption in Lake Constance 1928

Ionization chamber with electrometer read-out

 automatic each hour, up to 8 days

Absorption in Lake Constance 1928

equivalent depth (of water) from top of the atmosphere

E. Regener Phys. Z. 34 (1933) 306

Three pioneers of Cosmic Ray research Regener demonstrates his balloon electrometer (Immenstaad/Lake Constance, August 1932). A new electrometer

1) Oskar Taussi The First Warle PO vgi. auca "Elektrotechnil des Eleidrosechnischea
co-atronsutic motureh werk afermoc, Loodek rgaph Maschineabas", Zaitectrif in Wisa, He? 46, Ig2.,

Ein neuex Fadenelektrometer.

Von Werner Kolbōrster.

Zu Messurgen der Aurchdringenden Strahhuag hatte jeh fir meine neuen Strahlungaapparate ein Fadenelektrometer konstruiert ${ }^{1}$), das chned die bei derartigen Instrumenten notweadige Temperaturkompensation arbeitet. Da es sich anch für andere elektrostatische Messurgen seiner Vorzage und allgemeinen Verwendbarkeit halher als geeignet erwies, so scien hier ciniga Angaben tiber die Instrumente ${ }^{2}$) gemacht.

Prinzip: Als Gegenkraft gegen die elektrostatischen AbstoßungskrItte diens allein die Biegungsclastizität der fcinen Quarafaden, die die Form vertikal stchender, frei tragender Sehlingen haben und deren Erden in einigen Milimetern Abstand voneinander an eincm Metallblech befestigt sind, das in den Isolakr eingesctat pird. Entsprochend den Eis- und Zweifadenelektrometern kana man Systeme mir: einer oder awei kongruentea Schlingen verwenden, die von einem Mikroskop mit Okularmikrometer am Scheitel der Schlingen abgelesen wertien. Ladt man das System, so titt keine merkbiche Formänderung der Schlingen ein, diese bewegen sich vielmehr in der Horizon-

Kohlhörster - balloon flight 13. May 1934

hydrogen!

2 layers cotton fabric with rubber layer in between
gondola
2.3 m x 1.8 m

Kohlhörster - balloon flight 13. May 1934

${ }^{\text {abo. }}$ Masuch

Measurements of the cosmicray intensity (Höhenstrahlung) up to 12000 m

Fig. 6. Registrierapparat mit Schutzgondel.
(Hitteilung aus der Physikalisch-Technischen Reichsunstalt)

Das Wesen der Föhenstrahlung. Mit 8 Vou W. Bothe uad W. Kolhürster. $\begin{aligned} & \text { Vildungen. (Eingegangen am 18. Inni 10ga.) }\end{aligned}$

the nature of the „highaltitude radiation"

coincidence technique

Dreifuchkoinzidenzen der Ultrastrahlung aus vertikaler Richtung in der Stratosphäre**.
I. Meßmethode und Ergebnisse.

Fon Georg Plotzer in Stutigurt.
Mii, 11 Ahhildamgen. (Eingeganged om 9. Juni L93i.) Mit siner selbstaufzwehzerden Apperatur werdan bei drei Rugistrierballon anfstiegen Decifachkoinzidenzen der Clirastranlung aus vortikaler Fichtung bis

 und eitien Buckel bei 300 mm Hg. Die Fiwne kann gegen dua Rude der Atmo aphäre extrapoliarb wercuca.

Fig. S. Launching of a balloon train from the courtyard of the institute.

3) Die Firma Gebr. Junghans, Schramberg, hat uns freundlicherweise diese schönen Zahlwerke hergestellt.
G. Pfotzer, Z. f. Phys. 102 (1936)

Dreifachkoinzidenzen der Ultrastrahlung aus vertikaler Richtung in der Stratosphäre**.
I. Meflmethode und Ergebnisse.

Fon Geory Protzer in 8tulgart.

IIg. 1. Aus drel Aufstiegen gemittelte Kurve der Vnetikalintensithat der Ultrastrablung in der Amospilare.

Letters to the Editor

[The Editor does not hold himself responsible for opinions expressed by his correspondents. Neither the writers of, rejected manuscripts intended for this or any other part of Nature. No notice is taken of anonymous communications.]

Latitude Effect of Cosmic Radiation

ON the expedition organised by the Deutscher und Oesterreichischer Alpenverein in 1932 to the Andes of Peru, observations of cosmic rays were made at several heights up to $6,100 \mathrm{~m}$. and during the seavoyage. From Bremen to Peru one apparatus worked voyage. From Bremen to Peru one apparatus worked
during March and April 1932 on board the M.S. Erfurt of the Norddeutscher Lloyd line. On the return voyage in January and February 1933, three return voyage in January and February 1933, three
apparatuses were in full action from Peru through the Strait of Magellan to Hamburg on board the M.S. Isis of the Hamburg-Amerika line. The selfrecording electrometers were constructed by Prof. E. Regener on the same principle as those used for his researches in Lake Constance ${ }^{1}$ and in the upper atmosphere ${ }^{2}$. The electrometer wire is inside an ionisation chamber of 16 cm . diameter with 'deltametal' walls of 1 cm . thickness. The position of the wire is photographed every half-hour on a fixed photographic plate.
Instrument No. 1 was filled with carbon dioxide at 9.7 atmospheres pressure and $16^{\circ} \mathrm{C}$. With a radium capsule, I found the temperature effect on ionisation to $b \theta+0.13$ per cent for every $+1^{\circ} \mathrm{C}$. difference. The correction for barometric pressure was 0.29 per cent per millimetre of mercury. All data were reduced to $16^{\circ} \mathrm{C}$. and 760 mm . pressure. The ionisation due to radioactivity in the chamber itself was allowed for as 0.8 volts per hour as found on the bottom of Lake Constance at a depth of 250 m . Eight hemispherical shells of iron were fitted round the chamber. The combined thickness of this iron wal In Fig.
In Fig. 1 are recorded the data of apparatus No. 1, the iron case of which was open on the upper side. in volts per hour for different geomagnetic latitudes on the voyage from the Strait of Magellan to Ham burg. The geographical position of the geomagnetio north pole was taken to be $78^{\circ} 32^{\prime} \mathrm{N}$, and $69^{\circ} 08^{\prime} \mathrm{W}$ Erch point of the curve corresponds to an average of a twenty hours' registration. The points give a smooth curve which shows the accuracy of the recording method employed, The intensity incroases by about 12 per cent when roing from the equatorial region to $55^{\circ} \mathrm{N}$. geomagnetic latitude. shell. Apparatus No. 3 worked without any iron shell Every instrument shows substantially the same effect. In general, the curves agree with the observations of Clay ${ }^{3}$ and with those of A. H. Compton ${ }^{4}$ made at about the same time. It is very interesting that the northern and southern parts of the curve are not

Fig. 1.
symmetrical with respect to either the geomagnetio or the geographical equator. Considering the accu racy of our uninterrupted registration, this result quite trustworthy.
From the fact that a latitude effect of 12 per cent of the radiation exists, it must be concluded that this entering the earth's atrosphere. For the magnitude of this part of the radiation, reference should be mode to the analysis of the components of cosmie rays by Regener ${ }^{2}$ and Lenz ${ }^{\text {b }}$.
A more detailed report of these observations and of the researches in the Andes will be published in the Zeitschrift für Physik.
H. Hoerlin.

Physikalisches Institut der Technischen Hochschule, Stuttgart. June 8.

a Clay, J., Naturwiss., 20,$687 ; 1932$.
: Compton, A. H. Phys. Rev, 138,$387 ; 1933$.
t Compton, A. H., Phys. Rev, 43, 387 ; 1933.
Lenz, E., Z. Phys.; in the press.

Latitude effect

Clay: Latitude Effect

RESULTS OF THE DUTCH COSMIC RAY EXPEDITION 1933
II. the magnetic latitude effect of cosmic rays A MAGNETIC LONGITUDE EFFECT by J. CLAY, P. M. VAN ALPHEN and C. G. 'T HOOFT

Natuurkundig Laboratorium, Amsterdam

journey from Holland to Java intensity variies with latitude

cosmic rays are
charged particles

Fig. 1. Records of the variation of Cosmic Radiation with latitude on two different routes under different shielding with different instruments
$\times \cdots-\ldots-\ldots-\ldots . .-\cdots$ results with instrument D open (Amsterdam-Batavia)
$\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$ results with instrument D_{1} open (Batavia-Amsterdam) ! \quad ! Results 1928 and 1929.

Compton: World-wide survey of intensity of radiation

Fig. 24. The instrument uset in this survey is usually shielded with lead and is placed in the box when used in most airplane flighos.

Pig. a7. Showing the type of record obtained at sea level in this nowh survey. Two of the borizontal lines give barometric and temperature terank.

Fig. 25. The camerat will rake a onc-hundrot-toot seel of 35 mm anation pirnare film which is driven at a constant rate past the slit by a power clack. Changrable geans alluw warious zates of film specis ra he nseri, depending oat the expected ionization.
~1930

THE

Physical Review

A Journal of Experimencal and Theoretical Physic:	
Vot. 43, No. 6	March 15, $1933 \quad$ Secoso Sname

A Geographic Studz of Cosmic Rays

(Fovelvel لaxary 30, 193)

Fig. 7. Intensity ws. geonagnetic latitude at sea level, including data of Clay and Millikau.

Fin. f . Intensity ws geomagactic latitude for different clevatives.

1931-34 A.H. Compton 12 expeditions $\rightarrow \sim 100$ locations

Fig. 6. Compton's world map of isocosms. Note the parallelism of these liues of equal eosmic-ray intensity and the dottcd curves of geomagnetic latitude ($50^{\circ} \mathrm{N}$. and S .).
\longrightarrow cosmic rays are charged particles
~1937 East-West Effect of Cosmic-Ray Intensity

Fig. 14. The equipment for the E-W experiment.

Rossi and others

higher intensity from the west
\square cosmic rays are mostly positively charged

end 31 Jan

~1930 „elementary particles": charged neutral

Rutherford	(1919)	P	n	(1932)	Chadwick
Thomson	(1897)	e-	Y	$(1905 / 26)$	Einstein

Discovery of new particles in cosmic rays

$$
\text { ~1930 - } 1950
$$

birth of elementary particle physics
cloud chamber C.T.R. Wilson Nobel Prize 1927

Nobel Prize 1936

The Positive Electron ${ }^{+}{ }^{+}$

Carl D. Andersox, Gaifforwia Insbituto of Technology, Puacudersa, Calijorniz
(Received February 28, 1933)

Fic. 1. A fi3 milliun valt puaitran $i \Pi_{1}-21 \times 10$ grusa-m) pasging through a 6 man lead plate
 is at least ten times greater chan the forsilade length of of peotion pation this curvature.

1933 Blackett \& Occhialini

10 t electromagnet 30 cm cloud chamber

P.M.S. Blackett
Nobel Prize 1948

pair production

$$
\begin{aligned}
& Y \rightarrow e^{+} e^{-} \\
& \mathrm{E}=\mathrm{mc}^{2}
\end{aligned}
$$

Tig. 9. Pait of positive and negative elexrons produced by gaumes tays, (Chadwick, Blackect, and Occhialini, 1934)

Electromagnetic Cascades B. Rossi 1933

Fly. 7-5 A slower developing through a number of brass plates 1.25 em thick flamed across affinal sham hor. The shower was initiated in the top place by
 MTT sanals-my group

Fig. 7-1 Shower curve. The number of coincidences per hour is plotted as a function of the thickness of lead above the counters. The experimental arrangement is shown schematically in the inset. The circles are experimental points. ('This figure is based on one appearing in a paper by the author in Zeitschrift für Physik, vol. 82, p. 151, 1933.)

$$
\begin{aligned}
& Y \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \\
& \mathbf{e}^{+--} \rightarrow Y^{2}
\end{aligned}
$$

Discovery of the Muon

1937 Anderson \& Neddermeyer:

$$
\mathrm{m}_{\mu} \sim 200 \mathrm{~m}_{\mathrm{e}}
$$

1939 B. Rossi: life time

life time $\tau \sim 2 \mu s$
$\mu \rightarrow \mathrm{e}+\ldots$

P. Auger et al., Comptes renduz 206 (1938) 1721

coupled „high-altidute rays"

Koinzidenzen je Stunde in Abhängigkeit vom gegenseitigen Ab
Tabelle I. Anzahl der zusätzlichen Koinzidengepanzerten Zählrohre.

Mit zunehmendem Abstand der Zählrohre voneinander imm die Anzahi der Zufallskoinzidenzen zunachst imernd ab, bis sich bei über $10,0 \mathrm{~m}$ Abstand (Beobacht und iiberschüssige Koinzidenzen nicht mehr nachweisbar sind. Wurde ein Bleipanzer ($10 \cdot 10 \cdot 40 \mathrm{~cm}^{3}$) so zwischen die
 Strahles durch die beiden horizontai liegenden Rohre hinderte, so änderte sich wesentlich nichts, wie ja nach der Richtungsverteilung der Höhenstrahlen zu erwarten ist. Wohl aber machten sich die zusätzlichen Koinzidenzen nicht mehr bemerkbar, wenn die Rohre allseitig durch 10 cm Blei geschirmt wurden. Dann erhielt man auch bei nahe aneinanderliegenden Rohren dieselben konstanten Werte für τ wie bei uiber 10 m Abstand ungepanzert. Die zusätzlichen Koinzidenzen mußten demnach von Strahlen herrühren, die durch 10 cm Blei weitgehend absorbiert werden. Bei starker Erhöhung der Stoßzahlen durch radioaktive Bestrahlung wird der Einfluß der Höhenstrahlen unwirksam. Dann ergab sich ebenfalls bei kleinerem Zählrohrabstande (5 m) der Wert des Auflösungsvermögens, der I. nach den elektrischen Daten, 2. nach den Bestimmungen mit allseitigem Panzer und 3. nach den Messungen über 10 m Abstand ungepanzert das wahre Auflösungsvermögen der Anordnung darstellt.
Nur bei statistisch verteilten und voneinander unabhängigen Einzelstößen N_{1} und N_{2} der beiden Zählrohre gilt die Beziehung $K_{z}=2 N_{1} N_{2} \tau$ zur Bestimmung des Auflösungsvermögens τ. Es müssen also bei ungeschirmten und zu nahe

Kolhörster discovery of air showers

würden nach der Geometri bis zu 80° aus ihrer urs worden sein. Indessen ist von nur 1 cm Blei und Strahlen von $\mu_{P b}=0,12 \mathrm{~cm}$ uiberwiegend in der Atmos, Boden erzeugt werden. D bierende als strahlenauslös Freien eine gröBere Anzahl dingungen zu erwarten ist mit der 2 -fach-Koinzidenz die zusätzlichen Koinzider 20 m sicher beobachtet we strahlen im Freien sogar (Tabelle I). Selbst bei 75 Uberschub vorhanden, der reihen sichergestelit werde daB selbst Schauerstrahler $\frac{d a b}{}$ dem Boden entstehen, dies dem Boden entstehen, dies
würden dann tuber eine : wurden dann uber eine die räumliche Dichte der die raumliche Dichte der wenn sie als zusätzliche Ko wenn sie als zusätzliche Ko

Strahlen im Schauer. Unter der Decke des Experimentier-
raumes sind diese Sekundärstrahlen über eine Fläche von
mindestens 60 qm sicher n

Neue Messungen der Fluo

Distance d [m]
, koinzidenzaratur, deren Auflösungsvermögen mit einer besonderen Anordnung zu $5 \cdot 10^{-6} \mathrm{sec}$ estimmt worden war. Bei Aufstellung der Zählrohre horizontal und radial auf einem Kreise ist dann überhaupt keine ëorens $0^{-4} \mathrm{Koi} / \mathrm{Std}$.). Es ergaben sich aber bei Zählrohren von 216 qcm wirksamer Fläche

Ungepanzert. $2,7 \pm 0,4 \mathrm{Koi} / \mathrm{Std}$.
W. Kothorister et als., Nâturwiss. 26 (1938) 576

Extensive Air Shower

Proton $10{ }^{15} \mathrm{eV}$:
~ 1950 large detector arrays

Fig. 12-4 Shower disk approaching detectors (represented by circles on a horizontal plane).

Fig. 12-3 Experimental arrangement used hy the MTT exsmie-ray group to etudy air ehowers. Fluorescent plastis disks (thin rectungles ot top) emit flashes of light, when struck by ctharged partictes. At the oenter of each disk is a photomoltiplier tube that converts the light innsan electrical pulse; the auoplitude of the pulss is proportional to the brightress of the flash. Puleses trnvel to cathude-ray uecilluscoptes (éredew) through tramsenission lines conntaining delay carconita, which exualize the lenglites of the eflectrizal paths. Horizontal swesps of all cocilloscope seresens (grids) are triggened at the same time whemever three or more pulees pass through the cximeidetiee sincmit simaltaneomsly. The amplitudes of the "spikes" (Huat is, the heights of the vertioal detleetions in the oscillorocope tranas) indinate the nurribers of particiles strikiug the corresponding detertors. The positions of the spikes in the horizontal traces ahow the relative arrival times of the purtieliss.

EVIDENCE FOR A PRIMARY COSMIC-RAY PARTICLE WITH ENERGY $10^{20} \mathrm{eV} \dagger$

John Linsley

Iaboratory for Nuclear Science, Massachusetts Institute of Technnlogy, Cambridge, Massachusetta
(Rcecived 10 January 1963)

Fic. 1, Plan of the Volemo Ranch array in Pahruary 1082. The circies represent $3.3-\mathrm{m}^{2}$ scintillation deteotore. The numbers near the ctrcles are the shower demaitics (pertleles $/ \mathrm{m}^{2}$) registerem in this avent, No. 2-4874. Point " A " is the estimated lnemtimn of the shower core. The circular oontours about thet point aid in verifying the cxare location by inspection.

1943

The
 University of Chicago

Fig. 1. Participants at the Cosmic Ray Conference (Symposium on Cosmic Rays, 1939) convened at the University of Chicago in the summer of 1939. The identifjcation of participants is given by numbers in the over lay of this photograph as follows:

1. H. Bethe	18. W. Bothe	35. W. Bustick ${ }^{+}$	
2. D. Froman	19. W. Heisenherg	36. C. Eckart	
3. R. Brode	20. P. Auger	37. A. Code ${ }^{+}$	
4. A.H. Compton	21. R. Serber	38. J. Stearns (Denver?)	
5. E. Teller	22. T. Johnson	39. J. Hopfield	
6. A. Baños, Jr.	23. J. Clay (Holland)	40. E.O. Wollan ${ }^{*}$	
7. G. Groetzinger	24. W.F.G. Swann	41. D. Hughes ${ }^{+}$	
8. S. Goudsmit	25. J.C. Street (Harvard)	42. W. Jesse*	
9. M.S. Vallarta	26. J, Whecler	43. B. Hoag	
10. L. Nordheim	27. S. Neddermeyer	44. N. Hillberry ${ }^{+}$	
11. J.R. Oppenheimer	28. E. Herrog (?)	45. F. Shonka ${ }^{+}$	ICS
12. C.D. Anderson	29. M. Pomerantz	46. P.S. Gill ${ }^{+}$	
13. S. Forbush	30. W. Harkins (U. of C.)	47. A.H. Snell	Mama
14. Nielsen (of Duke U.)	31. H. Reutler	48. J. Schremp	
15. V. Hess	32. M.M. Shapiro ${ }^{+}$	49. A. Haxs? (Vienna)	こ RAYS
16. V.C. Wilson	33. M. Schein*	50. E. Dershem*	
17. B. Rossi	34. C. Montgomery (Yale)	51. H. Jones ${ }^{+}$	

*Then research associate of Compton.
+Then graduate student of Compton.

Die Wellraumstrahlung und ihre biologische Wirkung

Dic Kosmischen Strahlen, vor ca. 30 Jahren dunt HFSS entdeekt, und heute schon photographisr- und meBhar, beciaflusem narhhalig Wethstuna, Fruchtharktit und Krets, was ELigSTER in langjährigen Versuchen an Tiaren und Pflanzen bswies. Das Buch gibe Chysihern und Dialugen, aher auch gebilderen-Laien sine wertvolle Zusammenfassung der außarst vickecitiger. Fofachungsergelmisec.

emulsion

 chambers at high-altitude lab above Innsbruck (Austria)Disintegration Processes by Cosmic Rays with the Simultaneous Emission of Several Heavy Particles
On photographic plates which had been exposed to cosmic radiation on the Hafelekar ($2,300 \mathrm{~m}$. above sea-lovel) near Innsbruck for five months, we found, apart from the very long tracks (up to $1,200 \mathrm{~cm}$. in length) which have been reported recently in a not
in the Wiener Akademie-Berichte, evidence of seve in the Wiener Akademie-Be
processes described below.
From a single point within the emulsion seve tracks, somo of them having a considerable leng take therticles four with four and 'stars' with s even, icht and nine particles, one of each kind The longest track corresponded to a range in $15^{\circ}, 760 \mathrm{~mm} . \mathrm{Ho}$) of 176 cm . The ionization p duced by the particles is different in the diffor cases. Most of the tracks show much larger me grain-distances than α-particles and slow protons. In Fig. 1 a 'star' with eight tracks is reproduce On account of the rather steep angles at which sol of the particles cross the emulsion-layer (appro mately 70μ thick) it is not possible to have all t tracks of a 'star' in focus simultaneously. Fig. shows a sketch of the same 'star'. Measurement the tracks gives the results in the accompany table.

Track	Length in cm . of $\operatorname{air}\left(15^{\circ}, 760 \mathrm{mma}\right.$.)	Number of grains	Position of the end of the track
A	30.0 cm .	113	Within the emulsion
B	11.0 ,	15	
c	44.6 ,	71	Glass
D	$6 \cdot 2$ "	11	"
E	7.0 "	22	
F	1.2 13.6	67	
${ }_{H}^{G}$	13.6 28.9	67 58	Surface of the emulsion Glass

[^0]We believe that the process in question is a disintegration of an atom in the emulsion (probably Ag or Br) by a cosmic ray. The striking feature
ve
bout it is the simultaneous emission of so many heavy particles with such long ranges, which excludes any confusion with stars due to radioactive conchance is equally out of question. Brode and others ${ }^{1}$

Disintegration Processes by Cosmic Rays with the Simultaneous Emission of Several Heavy Particles

bserved a singlo case of a disintegration with three heavy particles in a Wilson cloud chamber. The phenomenon which Wilkins believes was a shower of protons is perhaps a similar process, but he did not observe a centre ${ }^{2}$
 dem pipteren Austian. 4.

Radium Tnstitut

11. 2 Physik. Institut, Wien. Aug. 25.
tragk, An xnterrupted line means that the
track is too long to be reeproduced on the same scale. The arrows indicate the dirgction pr

THE SURFACE OF THE EMUISSON TO THE GI
The total energy involved in the pro ss cannot as yet be calculated as most of the pi noles do not end in the emulsion.
We hope to give further detail wefore long in the Wiener Akademie-Berichte. M. Btad.
H. Wambacher.

Radium Institut
11. 2 Physik. Institut,

$$
\begin{aligned}
& \text { Wien. } \\
& \text { Aug. } 25 .
\end{aligned}
$$

${ }^{2}$ Brode, R. L., and others, Phys. Rev, 50, 581 (October, 1996) ${ }^{1}$ Brode, R. L., and others, Phys. Rev., 50, 581 (Oetober, 1936).

$$
\text { Wikins, Nai. Geoog. Soe,, Stratosphere Series, No. } 2,37 \text { (1936). }
$$

M. Btaf.
H. Wambacher.

Tracks of Nuclear Particles in Photographic Emulsions

Maurice M. Shapiro
Ryerson Laboratory, University of Chicago, Chicago, Illinois

Contents

I. Early history of the direct photographic method 58
II. Nature of the photographic technique-its advantages and limitations 61
III. Contributions of the photographic method in the field of cosmic rays 63
IV. Contributions of the photographic method to other problems in nuclear physics 68

1947 Discovery of the Pion

Fig. 9-4 Photomicrograph of tracks in a nuclear emulsion, showing a π meson (π) that comes to rest and decays into a μ meson (μ). The μ meson in turn comes to rest and decays into an electron (e). (From R. H. Brown, U. Camerini, P. Fowler, H. Muirhead, C. F. Powell, and D. M. Ritson, Nature, vol. 163, p. 47, 1949.)

$$
\mathrm{m}_{\pi} \sim 280 \mathrm{~m}_{\mathrm{e}}
$$

C.F. Powell

Nobel Prize 1950
Pion: nuclear interaction
decay $\mathrm{\Pi}^{+/-} \rightarrow \mu^{+/-} \rightarrow \mathbf{e}^{+/-}$

$$
\Pi^{0} \rightarrow Y Y
$$

End 1940s plastic balloons

 krgh of akout rao at and moct of the fabric is on tine ground. Suer a bn loon can in
 of 42 kg .

1941 protons (M. Schein) 1948 heavy nuclei (Brandt \& Peters)

Fig. 2. Examples of the tracks in phosografhic emustons of pmmary nacles of the cosmic ralixion mozing it melaivistic velocities.

The Cosmic-Ray Counting Rate of a Single Geiger Counter from Ground Level to 161 Kilometers Altitude

J. A. Van Alegk and H. E. Tater.*

Applied Pikysies Labaralary, Johms Hapkins Univatsily, Sifos Sprintg, Matyland
(Received October 16, 1947)

Cosmic-Ray Detection on Board of a REXUS Rocket

Jochem Beurskens

Figure 1.6: A schematic view of an intersection of the CubeSat cosmic-ray detector. Some cosmic-rays pass through the scintillator, but others are absorbed. Light emitted by the scintillator can then be detected by the light sensitive MPPCs at the bottom. The optical fibers increase the amount of light that is guided towards th MPPCs, thereby decreasing the amount of energy absorbed that remains undetected. The black outer rim represents the tape that covers the entirety of the cosmic-ray sensor, so that no outside light sources can cause misfires in the MPPCs.

Figure 2.3: The PR3 module, without the outer rim. The circled gray box is the CubeSat cosmic-ray detec And the PR3 module in the rocket.

Cosmic-Ray Detection on Board of a REXUS Rocket

3.2.2 Counts and Altitudinal Profile

Using the altitude data, from the combination of REXUS 25 and REXUS 26, together with the measured counts for the cosmic radiation a cosmic-ray count rate versus altitude graph is reconstructed. This is done in order to get a look at the shape of the Pfotzer maximum, from which the ratio of high and low energy particles can roughly be estimated.

Figure 3.5: Altitude versus count rate. As the GPS data for the REXUS 25 flight cut-off around 80 km altitude this part of the flight has been fitted separate from the descent part of the flight, which was mainly made with GPS data from REXUS 26. A square root of N error for both the ascent and descent fit is added as the shaded areas.

Stars and Heavy Primaries Recorded during a V-2 Rocket Flight

Herman Yagoda, Hervasio G. de Carvalho,* and Nathan Kaplan Laboratory of Physical Biology, Experimental Biology and Medicine Institute, National Institutes of Health, Bethesda, Maryland
(Received February 23, 1950)

Plates flown to an altitude of 150.7 km in a V - 2 rocket exhibit a differential star population of 5000 ± 800 per cc per day and a flux of heavy primaries of about $0.03 \mathrm{per}^{\mathrm{cm}}$ per min . above the stratosphere. The star intensity is about 3.6 times greater than that recorded by plates exposed in the stratosphere, the increment being attributable to secondary star forming radiations created by interaction of cosmic-ray primaries with the massive projectile. The flux of heavy primaries is essentially of the same order of magnitude as reported for elevations of 28 km .

Fig. 1. Cross section of plate holder. A. Aluminum jacket 3 mm thick. B. Sponge rubber packing. C. Plates assembled with emulsion layers adjacent to each other. D. Rubber gasket.

[^1]

1953 Cosmic-Ray Conference

birth of particle physics

particles discovered in cosmic rays:

- 1932 e $^{+}$Anderson
- 1937μ Anderson/

Neddermeyer

- 1947π Lattes, Occhialini, Powell
- 1947 K Rochester,

Butcher, Powell

- 1951-53 hyperons
$\Lambda \Xi \Sigma$

Rocket Determination of the Ionization Spectrum of Charged Cosmic Rays at $\lambda=41^{\circ} \mathrm{N}$

G. J. Perlow,* L. R. Davis, C. W. Kissinger, and J. D. Shipman, Jr.
U. S. Naval Research Laboratory, Washington, D. C.
(Received June 30, 1952)
In a V-2 rocket measurement at $\lambda=41^{\circ} \mathrm{N}$ an analysis has been made of the various components of the charged particle radiation on the basis of ionization and absorption in lead. The ionization was determined by two proportional counters, the particle paths through which were defined by Geiger counters. With increasing zenith angle toward the north, the intensity is found to be substantially constant until the earth ceases to cover the under side of the telescope. The intensity of all particles with range $\geq 7 \mathrm{~g} / \mathrm{cm}^{2}$ is $0.079 \pm 0.005\left(\mathrm{~cm}^{2} \mathrm{sec} \text { steradian }\right)^{-1}$. Of this an intensity 0.012 ± 0.002 is absorbed in the next $14 \mathrm{~g} / \mathrm{cm}^{2}$. The ionization measurement is consistent with $\frac{3}{4}$ of these soft particles being electrons of $<\sim 60 \mathrm{Mev}$, the remainder being slow protons and alpha-particles. For the particles with greater range an ionization histogram is plotted, the smaller of the two ionization measurements for a single event being used to improve the resolution. The particles divide into protons, alpha-particles, and one carbon nucleus, with $N_{p} / N_{\alpha}=5.3 \pm 1.0$. Their absorption is exponential with mean free path $440 \pm 70 \mathrm{~g} / \mathrm{cm}^{2} \mathrm{~Pb}$. Extrapolating to zero thickness, the total primary intensity is $0.070 \pm 0.005\left(\mathrm{~cm}^{2} \mathrm{sec} \text { steradian }\right)^{-1}$ with 0.058 ± 0.005 as protons, 0.011 ± 0.002 as alpha-particles, and 0.001 ± 0.001 as $Z>2$.

Fig. 1. Diagram of telescope.

Fig. 6, Absorption in lead of the total radiation.

Van Allen Belts

I. Gosmic ray burst delector.
a. Vertical telescope.
3. and or Dynamotor power supply aud fight batterics.
5. Magnetic oricntor for deremmining dirratics of ruckel axis with respect to earth's magnetic farlil.
6, $夕, \frac{8}{}$ and to, Gejper coumrar coincidenos: cirnuits, telemesering circuits and rarlio telametsining tratmernilter.
g. Horizontal teleximple.
11. 45^{2} telescapes.
12. Phockeell urienter to determine angle of rocket axis with the wolar vectar.
[y, Conaxial cable to telemetering anterna 1.1.

 bxpehtuzate of van Athan ano SmaEr.

Van Allen Belts

Radiation Around the Earth to a Radial Distance of $107,400 \mathrm{~km}$.

JAMES A. VAN ALLEN \& LOUIS A. FRANK

Fig. 71. The arrangement of radiation detectors in Pioneer IV. (After van Allen).

173

Fig. 69. The distribution of intensity in the radiation belts. (6 dec. 1958). The diagram represents a cross section through a meridian plane. $R_{e}(\sim 6400 \mathrm{~km})$ is the radius of the earth.
(After van Allen and Frank, Nature, $\mathbf{1 8 3}, 430$ (1959)).

Fig. 70. A comparison of the intensities of radiation found with nearly The trajectories identical counters in Pioneer III and Pioneer IV.
of the second belt the readingse were almost, but not quite, the same. At the peak followed either curve A or curve B. Curve A is more probable. (After zan Allen and Frank, Nature 184, 219 (1960)),

Formation of the chemical composition

Relative abundance of elements at Earth

abundance of elements in CRs and solar system mostly similar
but few differences, e.g. Li, Be, B $->$ important to understand propagation of cosmic rays in Galaxy \rightarrow column density of traversed matter
primary cosmic rays generated at source e.g. p, He, Fe
spallation products \rightarrow secondary cosmic rays, e.g. Li, Be, B

THE AGE OF THE GALACTIC COSMIC RAYS DERIVED FROM THE ABUNDANCE OF ${ }^{10} \mathrm{Be}^{*}$
M. Garcia-Munoz, G. M. Mason, and J. A. Simpson \dagger

Enrico Fermi Institute, University of Chicago Keceined i977 March 14; accepted 1977 April 21

Fia. 1.-Cross soction of the IMP-7 and IMP-8 telescopes. D11. D2, and D3 are lithium-drifted silicon detoctors of thickocss 750 , 1450 , and $800 ~ u m$, respectively, 124 is an $11.5 \mathrm{~g} \mathrm{~cm}^{-8}$ thick CII (T1) scintillator viewed by four photodioties. D5 is a sapphire scintillator/Cerenkov radintor of thiskness $3.98 \mathrm{~g} \mathrm{~cm}^{-2}$, and D6 is a plastic scintillation guard counter viewed by a photomultiplier tube. Asterisks denote detectors whose outpat is pulse-leight analyzed.
calibration

$$
{ }^{10} \mathrm{Be} \rightarrow{ }^{10} \mathrm{~B}+\mathrm{e}^{-}\left(\tau=2.410^{6} \mathrm{a}\right)
$$

$\tau=17^{*} 10^{6} a$

Isateaic Anelys © Mcss Histogrom of Golactit Gosmic Rop, Be (11.5P-7+ (MP-8 dotal
cosmic pi) rays

Composition of Cosmic-Ray Nuclei at High Energies*

Path length of cosmic rays

Einar Juliugson, Peter Meyer, and Dietrich Müller

Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinots 60637
(Received 26 May 1972)
We have measured the charge composition of oosmic-ray nuclei from Li to Fe with encrgies up to about $100 \mathrm{GeV} / \mathrm{nu} \mathrm{g}_{\mathrm{e}} \mathrm{on}$. A balloon-borne counter telescope with gas Cherenkov counters for energy determination was used for this experiment. Our first resulta show that, in contraat to low-energy obacrvations, the relative abundnnees change as a function of energy. We find that the ratio of the ralactic secondary nuclet to primary-source nuclei decreases at energies above about $30 \mathrm{GeV} / \mathrm{nucleon}$.

$\mathrm{g} / \mathrm{cm}^{2}$

spallation

B/C-ratio

$C \rightarrow B+n+p$

Origin of Cosmic Rays?

1927 R.A. Millikan: „death cries of atoms"
1933 Regener: E density in CRs ~ E density of B field in Galaxy
1934 Supernovae

1949 E. Fermi: acceleration at magnetic clouds

1978 R.D. Blanford, J.P. Ostriker: acceleration at strong shock front (1st order Fermi acceleration)

Beyond the boundaries of our Solar System

passage through termination shock ended Voyager 1: 94 AU, December 2004 Voyager 2: 84 AU, August 2007

February 2024: Voyager 1: 162 AU from Sun Voyager 2: 136 AU from Sun
Voyager 2: 20 August 1977 $\Delta T=c d \approx 22 \mathrm{~h}$ Voyager 1: 5 September 1977 Kenedy Space Center

Galactic Cosmic Rays and the Heliosphere

August 25th, 2012 Interstellar Space

[^0]: Centre of the 'star' 25μ under the surface of the emulsion

[^1]: Fig. 3. Nuclear evaporation recorded in one of the rocket plates.

