

### **Spectral classes**

To see how this spectral classification scheme works study the sequence of spectra shown below. It shows spectra for different stars has photographic plots. In reality photographic spectra would not show colour as the plates were monochrome but the colour has been added here to highlight the different wavelengths.



12.06.09 10:05

#### Spectral Class Summary

| Spectral<br>Class | Effective<br>Temperature<br>(K) | Colour           | H Balmer<br>Features  | Other Features                                        | M/M <sub>Sun</sub>                      | R/R <sub>Sun</sub> | L/L <sub>Sun</sub>  | Main<br>Sequence<br>Lifespan |
|-------------------|---------------------------------|------------------|-----------------------|-------------------------------------------------------|-----------------------------------------|--------------------|---------------------|------------------------------|
| 0                 | 28,000 - 50,000                 | Blue             | weak                  | ionised He <sup>+</sup> lines,<br>strong UV continuum | 20 - 60                                 | 9 - 15             | 90,000 -<br>800,000 | 1 - 10 Myr                   |
| В                 | 10,000 - 28,000                 | Blue-<br>white   | medium                | neutral He lines                                      | 3 - 18                                  | 3.0 -<br>8.4       | 95 -<br>52,000      | 11 - 400<br>Myr              |
| Α                 | 7,500 - 10,000                  | White            | strong                | strong H lines, ionised<br>metal lines                | 2.0 - 3.0                               | 1.7 -<br>2.7       | 8 -55               | 400 Myr - 3<br>Gyr           |
| F                 | 6,000 - 7,500                   | White-<br>yellow | medium                | weak ionised $Ca^+$                                   | 1.1 - 1.6                               | 1.2 -<br>1.6       | 2.0 -<br>6.5        | 3 - 7 Gyr                    |
| G                 | 4,900 - 6,000                   | Yellow           | weak                  | ionised Ca <sup>+</sup> , metal<br>lines              | 0.85 -<br>1.1                           | 0.85 -<br>1.1      | 0.66 -<br>1.5       | 7 - 15 Gyr                   |
| K                 | 3,500 - 4,900                   | Orange           | very weak             | Ca⁺, Fe, strong<br>molecules, CH, CN                  | 0.65 -<br>0.85                          | 0.65 -<br>0.85     | 0.10 -<br>0.42      | 17 Gyr                       |
| Μ                 | 2,000 - 3,500                   | Red              | very weak             | molecular lines, eg<br>TiO, neutral metals            | 0.08 -<br>0.05                          | 0.17 -<br>0.63     | 0.001 -<br>0.08     | 56 Gyr                       |
| L?                | <2,000                          | Tentativ         | e new (2000<br>low ma | <0.08                                                 | May or may not be fusing H<br>in cores? |                    |                     |                              |

## Main sequence stars





# Hydrogen burning

## **CNO cycle**

## p-p cycle







before joining the main sequence (3).

Once the Hydrogen at the core is consumed it expands into a red giant (4),

then sheds its envelope into a planetary nebula and degenerates into a white dwarf (5).







The Hertzsprung-Russell Diagram for 145 stars of the Pleiades open cluster. The vertical axis is absolute visual magnitude ( $M_V$ ), and the horizontal axis is color index, which is apparent magnitude in the B (blue) band minus the apparent magnitude in the V (visual) band. The data on this plot are for stars at the position of the cluster and with velocities that suggest membership in the cluster with 50% certainty. The data is taken from Kharchenko et al. (2004),<sup>[2]</sup> and they are available through the <u>VizieR service</u> in catalog J/AN/325/740/ csoca.



The Hertzsprung-Russell Diagram for stars of the open cluster Messier 67. The diagram contains 637 stars from a survey compete between 12.5 < B < 18.5 and 12.5 < V < 18.5. The distance of the cluster is set to 908 parsecs (Kharchenko et al. 2005).<sup>[3]</sup> The data is taken from Stassun et al. (2002), which is available through the <u>VizieR service</u> as catalog J/A + A/382/899/table3.<sup>[4]</sup>

