Radboud Universiteit Nijmegen Jörg R. Hörandel and Sascha Caron Bjarni Pont

Particles and the Cosmos - 2019/20
 Werkcollege 12
 05.12.2019

Problem 24 Atmospheric neutrinos
The Super-Kamiokande experiment measured atmospheric neutrinos, generated through interactions of cosmic rays in the atmosphere.

- How does the Super-Kamiokande experiment detect neutrinos?
- How are neutrinos generated through interactions of cosmic arys in the atmosphere?
- What ratio of ν_{μ} / ν_{e} do we expect?
- Super-Kamiokande observed the flux of muon neutrinos as a function of zenith angle. Did they measure the expected ratio of ν_{μ} / ν_{e} for upward and downward going neutrinos?

Problem 25 Solar neutrinos

For many decades a deficit in the flux of electron neutrinos has been recorded from the Sun. This is known as the solar neutrino puzzle. The breakthrough has been achieved by the SNO experiment.

- Describe the detection principle of the SNO experiment.
- How did the SNO experiment solve the solar neutrino puzzle?

Problem 26 Interactions of high-energy cosmic rays with the cosmic microwave background
High-energy cosmic rays (protons) can interact with the photons of the 3 K mi crowave background. If the protons exceed a minimum energy $E_{G Z K}$, high-energy pions are produced via the interactions

$$
p+\gamma_{3 K} \rightarrow \Delta^{+} \rightarrow p+\pi^{0}
$$

or

$$
p+\gamma_{3 K} \rightarrow \Delta^{+} \rightarrow n+\pi^{+} .
$$

This effect has been predicted in 1965 by the physicists Greisen, Zatsepin, and Kuz'min. Hence, the name GZK effect. These interactions take place if the energy of the 3 K photons exceeds $m_{\Delta} c^{2}=1232 \mathrm{MeV}$ in the rest frame system of the protons.

- Calculate the threshold energy $E_{G Z K}$ for a proton.

Hint: the energy of the photons is given as $\epsilon_{\gamma} \approx 2.5 \mathrm{meV}$.

- Knowing that the density of the 3 K photons is $n_{\gamma}=411$ photons $/ \mathrm{cm}^{3}$ and the cross section for the above mentioned interactions is $\sigma_{p \gamma}=300 \mu \mathrm{~b}\left(1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2}\right)$, calculate the mean free path of the protons in units of $[\mathrm{Mpc}]$.

Student assistant: Bjarni Pont b.pont at astro.ru.nl
Lecture web site: http://particle.astro.ru.nl/goto.html?partcos1920

