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Problem 5 Silicon Detector as thin detector
Silicon detectors are often used for detecting cosmic-rays in association with particle
calorimeters. The detection setup consists of a thin silicon detector and a thick
detector (i.e the particle calorimeter), in which the particles are absorbed, see sketch.

Particles with kinetic energy E loose the energy ∆E in the thin detector. The
remaining energy E ′ is measured with the thick detector, i.e. ∆E = E − E ′. In a
generic material, nuclei with mass M and charge Z penetrate a distance R equal to

RZ,M(E/M) = k
M

Z2
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)α
and the silicon detector thickness L can be written as

L = RZ,M(E/M)−RZ,M(E ′/M) .

With this configuration, mass and charge of an atomic nucleus can be determined
unambiguously.

Show that
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Hint: assume M/Z = 2+ε. This is assumption is valid for light nuclei with Z < 30.



Problem 6 Magnet Spectrometer
The momentum of a particle can be measured with a magnet spectrometer. Recent
experiments usually comprise a silicon detector to measure the charge Z of the
particles, a Čerenkov detector to measure the particle velocity β = v/c, and a
magnet spectrometer. The latter measures the rigidity of the particles. The rigidity
is given as R = pc/(Ze), with the particle momentum p, the speed of light c and
the elementary charge e.

Assume a magnet spectrometer with homogeneous magnetic field (B = 1 T), a
height of h = 1 m, and a spatial resolution equal to ∆x = 200 µm on measuring the
particle trajectory.

a) Calculate the maximum momentum pmax, which can be measured for the given
spatial resolution for a proton (Z = 1, A = 1) and a helium nucleus (Z = 2,
A = 4). Express the result in the unit [GeV/c]. It is 1 GeV/c = 5.34 · 10−19 kg
m/s.

b) Charge Z and mass M can be measured with such a detector as well. The
momentum is given as p = Mβγc with the Lorentz factor γ = 1/

√
1− β2.

Show that

M =
RZe

c2
·
√

1

β2
− 1.

Problem 7 Electromagnetic calorimeter
Electromagnetic calorimeters are used to measure the energy of photons and e±

through multiple bremsstrahlung and pair-production interactions, which end into
an electromagnetic shower composed of photons and e±. For e± with energy above
1 GeV, the radiation length, i.e. the average distance x that a particle needs to travel
in a material to reduce its energy to 1/e of its original energy, can be expressed by

X0 =
716 A

Z(Z + 1) ln
(

287/
√
Z
) g cm−2

The critical energy, defined as the energy at which the electron ionization losses and
bremsstrahlung losses become equal, is given by

ε =
610

Z + 1.24
MeV



The depth at which the electromagnetic shower reaches its maximum number of
particles can be approximated as

Xmax ' ln

(
E

ε

)
·X0

The lateral extension of a shower is given by the Molière radius

RM =
21 MeV

ε
·X0

a) Evaluate the radiation length for a calorimeter made of Tungsten (<A>= 183.84,
Z = 74) and for one made of Carbon (A = 12, Z = 6);

b) given an electromagnetic shower started by a 1 TeV electron, evaluate the
required linear thickness and width of one calorimeter made of Tungsten and
of one made of Carbon with the following requirements: the shower should
reach Xmax and has to be laterally confined. Discuss the obtained results.

Problem 8 Hadronic calorimeter
Similarly to electromagnetic calorimeters, hadronic calorimeters are absorbing de-
tectors, aimed to measure the total energy of impinging particles. Usually they
are made of several layers of passive absorber material alternated with sampling
layers (e.g. scintillators, multi-wire chambers, proportional tubes, etc.). Compared
to electromagnetic calorimeters, the thickness of the absorber layers is optimized to
the hadronic interaction length, which is given as

λ =
A

NA · ρ · σtot
,

where A is the atomic mass number of the impinging particle, NA is the Avogadro’s
constant, ρ is the material density, and σtot is the total interaction cross-section, i.e.
the sum of the elastic and inelastic cross-section.
Since σtot scales weakly with the particle energy for

√
s= 1 – 100 GeV and σtot ∝ A2/3,

the formula can also be rewritten as

λ = 35 · A1/3 g cm−2.

a) Compute the interaction length of protons and the radiation length of electrons
in a Tungsten calorimeter.
Hint: for computing the radiation length, use the formula given in Problem 7.

b) Given the result of problem a), discuss if a hadronic calorimeter can efficiently
disentangle hadrons and leptons and if an electromagnetic calorimeter can.

c) In most collider experiments, like CMS and Atlas, the individual detectors are
arranged in concentric shells around the interaction point. Usually, electro-
magnetic calorimeters are located in a shell closer to the interaction point than
hadronic calorimeters. Discuss the possible reason.
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