Particles and the Cosmos

2020/2021

Sascha Caron, Jörg Hörandel

NM109

28 hrs lecture Tuesday $\quad 8: 30-10: 15$
28 hrs problem session Wednesday $10: 30-12: 15$

Lectures:
\quad Experimental methods (JRH)
01.09 .2020

1. Interactions with matter
08.09.2020
2. Detectors
Standard model (SC)
15.09.2020 3. Particles, QED, Feynman rules
22.09.2020 4. Hadrons and QCD
29.09.2020 5. Hadrons and QCD
06.10.2020 6. Weak interactions, CP violation
13.10.2020 7. Higgs mechanism
Astroparticle physics (JRH)
10.11.2020 8. The birth of cosmic rays
17.11.2020 9. Cosmic rays in the Galaxy, in the heliosphere, and the Earth magnetic field
24.11.2020 10. Cosmic rays at the top of and in the atmosphere
01.12.2020 11. Cosmic rays underground - neutrino oscillations
08.12.2020 12. Neutrino oscillations
Beyond the Standard Model, Dark Matter (SC)
15.12.2020 13. Lambda CDM, Big-bang nucleosynthesis
22.12.2020

for Astroparticle Physics

Jörg R. Hörandel
HG 02.728
http://particle.astro.ru.nl

Interactions of particles with matter

electromagnetic processes

- Coulomb scattering
- Ionization loss
- Cherenkov light
- Bremsstrahlung
photon interactions
- Photo effect
- Compton scattering
- pair production
e/m collisions on magnetic and photon fields
- synchrotron radiation
- inverse Compton effect
hadronic interactions
- secondary particles, multiplicity, inelasticity
- nuclear fragmentation

Detectors and Experiments

Resolution

detectors for particles measure

- energy/momentum
- position
- time
the resolution characterizes the quality of a detector
expected value: $\langle z\rangle=\frac{\int z \cdot D(z) d z}{\int D(z) d z}$ distribution function $D(z)$
the variance of the measured value is

$$
\sigma_{z}^{2}=\frac{\int(z-\langle z\rangle)^{2} D(z) d z}{\int D(z) d z}
$$

frequently the measured values follow a Gaussian distribution

$$
D(z)=\frac{1}{\sigma_{z} \sqrt{2 \pi}} \exp \left(-\frac{\left(z-z_{0}\right)^{2}}{2 \sigma_{z}^{2}}\right)
$$

the confidence interval gives probability that the measured value is within this interval

$$
1-\alpha=\int_{\langle z\rangle-\delta}^{\langle z\rangle+\delta} D(z) d z
$$

gives the probability that the true value z_{0} is in the interval $\pm \delta$ around the measured value $\langle z\rangle$
 $100 \cdot(1-\alpha) \%$ of the measured values are within $\pm \delta$ $1 \sigma \rightarrow 1-\alpha=68.33 \%$

Photomultiplier

incident photons liberate electrons (photoelectric effect)
the electrons initiate an avalanche of secondary electrons --> amplification
quantum efficiency gives the number of photo electrons relative to the incident photons
amplification factor $A=p^{n-1}$
$n-1$ dynodes
p emission coefficient for secondary electrons typical values $p=4, n=14-->A=7 * 10^{\wedge} 7$
charge at anode: $Q=e A=1.1 \cdot 10^{-11}$

Scintillator

incident particles lift electrons from the valence band to the conduction band
recombination of (free) electron and hole --> emission of photon
typical yield $\sim 10^{3}$ to 10^{4} photons/MeV

Magnetic spectrometer

 momentum measurement particle in magnetic field $\frac{m v^{2}}{\rho}=\operatorname{ev} B \quad$ and $\quad \rho=\frac{p}{e B}$ deflection angle $(\rho \gg L) \quad \theta=\frac{L}{\rho}=\frac{L}{p} e B$ measured momentum $\quad p=e B \rho=e B \frac{L}{\theta}$$\left|\frac{d p}{d \theta}\right|=e B L \frac{1}{\theta^{2}}=\frac{p}{\theta}$
momentum resolution
$\frac{\sigma(p)}{p}=\frac{2 \sigma(x) / h}{e B L} p$
$\sigma(p) \propto p^{2}$

$$
\text { maximum momentum: } \frac{\sigma\left(p_{\max }\right)}{p_{\max }}=1
$$

Cherenkov detector

- particle identification threshold detector

$$
\gamma_{t h}=\frac{1}{\sqrt{1-\frac{1}{n^{2}}}}=\frac{E_{t h}}{m_{o} c^{2}}
$$

select material with appropriate n
--> light particles radiate

- measurement of velocity (kinetic energy)

$$
\cos \theta_{c}=\frac{c}{n \beta c}=\frac{1}{n \beta}
$$

ring imaging Cherenkov detector (RICH)

Ionization chamber

traversing particle liberates electrons (ionization)
electrons and (positive) ions drift in electric field
--> electric signal proportional to energy loss
thin chamber $-->d E / d x$ thick chamber --> total E (particle completely absorbed)

energy in electric field reduced through free charge carriers $\frac{1}{2} C U^{2}=\frac{1}{2} C U_{0}^{2}-N \int_{x_{0}}^{x} q E d x \quad \begin{aligned} & \text { capacitor charged to } U_{0} \\ & N \text { charge carrier pairs }\end{aligned}$ only small voltage change $U+U_{0}=2 U_{0} \quad$ and $\quad U-U_{0}=\Delta U \quad$ and $\quad E=U_{0} / d$ signal amplitude $\Delta U=-\frac{N q}{C d}\left(x-x_{0}\right) \quad \begin{aligned} & \text { proportional to liberated } \\ & \text { charge and deposited energy }\end{aligned}$

Multi-Wire Proportional Chamber

spatial resolution $\sigma(x)=\frac{d}{\sqrt{12}}$

ionization liberates electrons --> acceleration in electric field energy gain between to electron collisions

$$
\Delta E_{k i n}=-e \int_{r_{1}}^{r_{2}} E(r) d r
$$

2

d
electric field

e
if energy gain is larger than ionization energy
--> development of electron avalanche

$$
\text { voltage signal } \Delta U=-\frac{e N}{C} A \begin{aligned}
& \boldsymbol{A} \text { gas amplification factor } \\
& \boldsymbol{N} \text { charge carrier pairs } \\
& \boldsymbol{C} \text { capacity }
\end{aligned}
$$

Energy measurement - silicon detector

for particles with MeV energies

p-n semiconductor

an incident particle generates a series of electron-hole pairs
--> in secondary processes further electron-hole pairs are generated and phonons are excited
--> high charge density along trajectory of 10^{15} to 10^{17} electrons $/ \mathrm{cm}^{3}$

Energy measurement - calorimeter

electron-photon calorimeter

at high energies (>GeV):
electrons loose energy through Bremsstrahung photons loose energy through pair production --> electromagnetic cascade

Iongitudinal shower development/energy loss

$$
\frac{d E}{d t}=c o n s t \cdot t^{a} e^{-b t}
$$

$$
t=x / X_{0}
$$

depth in material in units of the radiation length

depth of maximum depends on energy as

$$
t_{\max } \propto \ln \frac{E}{E_{c}}
$$

Energy measurement - calorimeter

electromagnetic cascade

lateral extension of the cascade mostly caused by multiple scattering and characterized by Molière radius

$$
R_{m}=\frac{21 \mathrm{MeV}}{E_{c}} X_{0}\left[\frac{\mathrm{~g}}{\mathrm{~cm}^{2}}\right]
$$

Electromagnetic calorimetry

FIG. 2 (a): Simulated shower longitudinal profiles in PbWO_{4}, as a function of the material thickness (expressed in radiation lengths), for incident electrons of energy (from left to right) 1 GeV , $10 \mathrm{GeV}, 100 \mathrm{GeV}, 1 \mathrm{TeV}$. (b): Simulated radial shower profiles in PbWO_{4}, as a function of the radial distance from the shower axis (expressed in radiation lengths), for 1 GeV (closed circles) and 1 TeV (open circles) incident electrons. From Maire (2001).

Fabjan, Rev. Mod. Physs، 25 (2003) ${ }^{1243}$

Energy measurement - calorimeter

hadron calorimeter

high-energy hadrons (> GeV) undergo inelastic processes
--> production of secondary particles
--> hadronic shower, characterized by hadronic interaction length λ

a fraction of the energy

- escapes from the calorimeter (leakage)
- is invisible (nuclear excitation, neutrinos, ...)

Energy measurement - calorimeter

 hadron calorimeterlongitudinal shower development

S. Plewnia et al. / Nuclear Instruments and Methods in Physics Research A 566 (2006) 422-432

Fig. 2. Schematic view of the sampling calorimeter.

Energy measurement - calorimeter

hadron calorimeter

lateral shower development

S. Plewnia et al. / Nuclear Instruments and Methods in Physics Research A 566 (2006) 422-432

$$
\delta E(r)=C_{1} \cdot \exp \left(-\frac{r}{r_{1}}\right)+C_{2} \cdot \exp \left(-\frac{r}{r_{2}}\right)
$$

Measurement
Simulation

Fig. 9. Lateral distribution of the energy deposition in different layers of the calorimeter for 300 GeV hadrons. Measurements (solid lines) and simulations (dashed lines) are represented by parameterizations according to Eq. (5).

Particle identification - calorimeter

in calorimeters there are different shower responses for electrons and hadrons

Transition radiation

particles traversing a boundary of media with different dielectric properties --> emission of transition radiation (below Cherenkov threshold)
differential energy spectrum of emitted x-ray photons

$$
\begin{aligned}
\frac{\mathrm{d}^{2} W_{0}}{\mathrm{~d} \omega \mathrm{~d} \theta}= & \frac{2 \alpha \hbar \theta^{3} Z^{2}}{\pi} \\
& \left|\frac{1}{\gamma^{-2}+\theta^{2}+\xi_{1}^{2}}-\frac{1}{\gamma^{-2}+\theta^{2}+\xi_{2}^{2}}\right|^{2}
\end{aligned}
$$

$$
\xi_{i} \equiv \omega_{i} / \omega
$$

ratio of material's plasma frequency to the emitted photon frequency

$$
\epsilon_{i} \approx 1-\xi_{i}^{2}
$$

dielectric constant emission of photons sharply peaked in forward direction $\quad \theta \approx 1 / \gamma$ total radiation yield (integrated over all angles and frequencies)

$$
W_{0}=\frac{\alpha \hbar Z^{2}}{3} \frac{\left(\omega_{1}-\omega_{2}\right)^{2}}{\omega_{1}+\omega_{2}} \gamma
$$

Transition radiation

interference effects between the emission amplitudes of all media boundaries of a radiator

for N -foil regular stack with constant spacing \mathbf{l}_{2} and foil thickness \mathbf{l}_{1}

$$
\frac{\mathrm{d}^{2} W_{N}}{\mathrm{~d} \omega \mathrm{~d} \theta}=\frac{\mathrm{d}^{2} W_{0}}{\mathrm{~d} \omega \mathrm{~d} \theta} 4 \sin ^{2}\left(\frac{l_{1}}{z_{1}}\right) \frac{\sin ^{2}\left[N\left(l_{1} / z_{1}+l_{2} / z_{2}\right)\right]}{\sin ^{2}\left(l_{1} / z_{1}+l_{2} / z_{2}\right)}
$$

Fig. 1. Differential TR yield ($\mathrm{d} W / \mathrm{d} \omega$) versus Lorentz factor for several configurations. Shown are the single-interface (smooth line) and approximate multi-foil (oscillating line) energy spectra, as well as the multi-foil spectrum modified by self-absorption processes in the foil (dashed line). The dotted line shows the yield which would be captured in a single 1 cm thick layer of xenon. The characteristic peak emission energy $\omega_{\text {peak }}$ is also indicated. All spectra are normalized to a singleinterface yield. The relevant parameters are $\gamma=2 \times 10^{4}, l_{1}=$ $35 \mu \mathrm{~m}, l_{2}=1000 \mu \mathrm{~m}, \omega_{1}=21.2 \mathrm{eV}$, and $\omega_{2}=0.75 \mathrm{eV}$.

Transition Radiation Detector

- particle identification (threshold detector)
- energy measurement (Lorentz factor)

TRD test at CERN

Detectors at accelerators

 LEIR Low Energy ion Fing LINAC LINsar ACceierabor n-Tof Nautrons Time Of Fight,

Components of a "traditional" particle physics experiment. Each particle type has its own signature in the detector. For example, if a particle is detected only in the electromagnetic calorimeter, it is fairly certain that it is a photon.

CMS DETECTOR

Total weight
Overall diameter : 15.0 m
Overall length
: 28.7 m
Magnetic field

STEEL RETURN YOKE
12,S00 tonnes

SILICON TRACKERS

Pixel ($100 \mathrm{x} 150 \mu \mathrm{~m}$) $\sim 16 \mathrm{~m}^{2} \sim 66 \mathrm{M}$ channels
Microstrips ($80 \times 180 \mu \mathrm{~m}$) $\sim 200 \mathrm{~m}^{2} \sim 9.6 \mathrm{M}$ channels

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying $\sim 18,000 \mathrm{~A}$

MUN CHAMBERS
Barrel: 250 Drift Tuke, 480 Resistive Plate Chambers Endeaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER

Silicon strips $\sim 16 \mathrm{~m}^{2} \sim 137,000$ channels

FORWARD CALORIMETER
Steel + Qualtz fibres $\sim 2,000$ Chammels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
$\sim 76,000$ scintillating PbWO_{4} crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintiliator $\sim 7,000$ channels
rostrips $(80 \times 180 \mu \mathrm{~m}) \sim 20$

Detectors for direct measurements of Cosmic Rays above the atmosphere

-Silicon detector

- Magnet spectrometer
- Calorimeter
-Cherencov detector
-Transition radiation detector

IZI, A, E isotopes
+/- Z, E anti-particles
IZI, E elements
IZI, E elements
IZI, E elements

Ulysses High Energy Telescope (HET)

silicon detector telescope

particles with energy \boldsymbol{E} loose ΔE in thin layer $E^{‘}$ remaining energy
particles with energy E and mass M and charge Z penetrate a distance R into the material

$$
R_{Z, M}(E / M)=k \frac{M}{Z^{2}}\left(\frac{E}{M}\right)^{\alpha}
$$

the thickness of the thinn
layer can be expressed as $L=R_{Z, M}(E / M)-R_{Z, M}\left(E^{\prime} / M\right)$
with such an set-up the charge Z and mass M of an incident particle is measured

$$
\begin{array}{r}
Z=\left(\frac{k}{L(2+\epsilon)^{\alpha-1}}\right)^{1 /(\alpha+1)}\left(E^{\alpha}-E^{\prime \alpha}\right)^{1 /(\alpha+1)} \\
M=\left(\frac{k}{Z^{2} L}\right)^{1 /(\alpha-1)}\left(E^{\alpha}-E^{\prime \alpha}\right)^{1 /(\alpha-1)}
\end{array}
$$

incident cosmic-ray nuclei are fully characterized (Z, A)

Advanced Composition Explorer (ACE)

NASA / Goddard Space Flight Center; Start: 25.8.97, 9 wissensch. Instrumente (156 kg) ; 90\% duty cycle $\mathrm{I} \leq \mathrm{Z} \leq 28$; $\mathrm{I} \mathrm{keV} \leq \mathrm{E} \leq 600 \mathrm{~A} \cdot \mathrm{MeV}$

CRIS: The Cosmic Ray Isotope Spectrometer

SIDE VIEW

BESS Instrumentation

BESS-PolarlI

Run: 095 Event: 4200488 (5A) Size: 2897 FADC: 1944 FEND: 904 Trigger: 001001011 JET: 71 IDC: 4 UTOF: 1 MTOF: 1 LTOF: 1

Event display with reconstructed Antiproton track is shown.

Rigidity (MDR:240GV)
Solenoid: Uniform field ($\phi=1 \mathrm{~m}, \mathrm{~B}=0.8 \mathrm{~T}$) Thin material ($2.4 \mathrm{~g} / \mathrm{cm}^{2}$)

Drift chamber: Redundant hits

$$
\text { (} \sigma \sim 150 \mu \mathrm{~m}, 32 \sim 48+4 \mathrm{hits} \text {) }
$$

Charge, Velocity

TOF, Chamber: $\mathrm{dE} / \mathrm{dx}$ measurement

$$
(Z=1,2, \ldots)
$$

TOF: $1 / \beta$ measurement ($\sigma \sim 1,2 \%$)

$$
m=Z e R \sqrt{1 / \beta^{2}-1}
$$

Measuring Antimatter over Antarctica

Alpha Magnetic Spectrometer - AMS

Alpha Magnetic Spectrometer - AMS

Advanced Thin Ionization Calorimeter

The CALorimetric Electron Telescope (CALET): High Energy Astroparticle Physics Observatory on the International Space Station

- CHarge Detector (CHD)
(Charge Measurement in $\mathrm{Z}=1-40$)
- Imaging Calorimeter (IMC)
(Particle ID, Direction)
Total Thickness of Tungsten (W): $3 x_{a}, 0.11 \lambda_{2}$ Layer Number of Scifi Belts: 8 Layers $\times 2(\mathrm{X}, \mathrm{Y})$
- Total Absorption Calorimeter (TASC)
(Energy Measurement, Particle ID)
PWO $20 \mathrm{~mm} \times 20 \mathrm{~mm} \times 320 \mathrm{~mm}$
Total Depth of PWO: $27 \mathrm{X}_{0}(24 \mathrm{~cm}), 1.35 \lambda_{\mathrm{L}}$
BaSE PANEL

	CHD (Charge Detector)	IMC (Imaging Calorimeter)	TASC (Total Absorption Calorimeter)
Function	Charge Measurement ($\mathrm{Z}=1$ - 40)	Arrival Direction, Particle ID	Energy Measurement, Particle ID
$\begin{gathered} \text { Sensor } \\ \text { (+ Absorber) } \end{gathered}$	Plastic Scintillator: $\mathbf{2}$ layers Unit Size: $\mathbf{3 2 m m} \times 10 \mathrm{~mm} \times$ 450 mm	SciFi: 16 layers Unit size: $1 \mathrm{~mm}^{2} \times 448 \mathrm{~mm}$ Total thickness of Tungsten: $3 \mathrm{X}_{0}$	PWO log: 12 layers Unit size: $19 \mathrm{~mm} \times 20 \mathrm{~mm} \times$ 326 mm Total Thickness of PWO: $27 \mathrm{X}_{0}$
Readout	PMT+CSA	64 -anode PMT+ ASIC	$\begin{gathered} \text { APD/PD+CSA } \\ \text { PMT+CSA (for Trigger) } \end{gathered}$

The energy spectrum of cosmic-ray protons and helium near 100 GeV
E. Diehl ${ }^{1}$, D. Ellithorpe, D. Müller, S.P. Swordy *

Department of Physics, Enrico Fermi Institute, University of Chicago, 5640 Ellis Avenue, Chicago, IL 60637-1433, USA Received 15 February 2002; accepted 2 May 2002

Fig. 1. Schematic cross-section of the instrument.

Cosmic Ray Nuclei instrument - CRN

TRACER experiment

TRACER Overview

- Two pairs of Cerenkov and Scintillation Detectors
- 1600 Proportional Tubes $(2 \mathrm{~cm} \times 2 \mathrm{~m})$ in 16 Layers
- Upper 8 Layers: dE/dX in Gas (dE/dX array)
- Lower 8 Layers: $\mathrm{dE} / \mathrm{dX}+\mathrm{TR}$ (TRD)

TRACER Experiment - Mc Murdo, Antarctica
flight: 12. - 26. December $2003 \sim \sim 40 \mathrm{~km}\left(3-5 \mathrm{~g} / \mathrm{cm}^{2}\right)$
balloon filled with $10^{6} \mathrm{~m}^{3} \mathrm{He}$
~130 m diameter
total mass ~5 t

TRACER Experiment

TRACER Experiment - Mc Murdo, Antarctica
flight: 12. - 26. December $2003 \sim 40$ km (3-5 g/cm²)

