Radboud Universiteit Nijmegen Jörg R. Hörandel and Sascha Caron Abha Khakurdikar

Particles and the Cosmos - 2020/21 Werkcollege 9 - Introduction to Astroparticle Physics

11.11.2020

Problem 13 Stochastic acceleration
Relativistic protons are accelerated at a shock front. At each crossing of the shock the particles gain $\xi=20 \%$ energy. The probability to again cross the shock is $P=80 \%$.
Derive the form of the energy spectrum and calculate the spectral index γ.
Problem 14 Second order Fermi acceleration
Particles are accelerated at magnetic clouds with a speed $V=10^{-4}$ c. Calculate the time needed to accelerate particles form an energy of 100 MeV to 1 PeV . The diffusion coefficient of cosmic rays in the Galaxy is $D=10^{28} \mathrm{~cm}^{2} / \mathrm{s}$.
Compare this time to the confinement time of cosmic rays in the Galaxy.
Consider the first interaction of a cosmic ray particle with a cloud. Calculate the energy gain in the first interaction and compare it to the energy loss through ionization in the interstellar medium. Assume $\rho=1 \mathrm{H} / \mathrm{cm}^{3}$ and $d E / d x=2 \mathrm{MeV} /\left(\mathrm{g} / \mathrm{cm}^{2}\right)$.
Hint: the mean free path between two clouds can be estimated from D.
Problem 15 Gas diffusion
Consider an ideal gas in a box. The box is divided in two halfs by a wall with area A, and on one side we have the mass density ρ_{1} on the other side ρ_{2}. When the separation wall is removed, diffusion starts until an equilibrium of the gas densities is reached.

A mass flow per unit time emerges along the x -axis

$$
\frac{\Delta m}{\Delta t}=-D \cdot A \cdot \frac{d \rho}{d x},
$$

with the diffusion coefficient $D\left[\mathrm{~cm}^{2} / \mathrm{s}\right]$ and the density gradient $d \rho / d x$.
Given the Avogadro constant N_{A} and the molar mass M (in case of a mixed gas, M is the average molar mass), the current density is given as

$$
j=\frac{\Delta m}{A \cdot \Delta t} \cdot \frac{N_{A}}{M},
$$

and the particle number density is given as

$$
n=\frac{\rho \cdot N_{A}}{M} .
$$

Show that for this case

$$
\vec{j}=-D \cdot \frac{\partial n}{\partial x} \quad 1^{s t} \text { law of Fick }
$$

and

$$
\frac{\partial n}{\partial t}=\frac{\partial}{\partial x}\left(D \cdot \frac{\partial n}{\partial x}\right) \quad 2^{n d} \text { law of Fick. }
$$

Problem 16 Mean Free Path
Cosmic-ray particles move through the Galaxy. Estimate the mean free path of cosmic-ray particles between two collisions with particles of the interstellar medium. Assume a particle density of the interstellar medium of 1 proton $/ \mathrm{cm}^{3}\left(m_{p}=1.67\right.$. $10^{-24} \mathrm{~g}$).
Use the geometrical cross section with a radius $r_{A}=r_{0} A^{1 / 3}$ for nuclei with mass number $A>1\left(r_{0}=1.3 \mathrm{fm}\right)$ and $r_{p}=0.8 \mathrm{fm}$ for protons $\left(1 \mathrm{fm}=10^{-15} \mathrm{~m}\right)$.
Calculate the mean free path for protons, oxygen nuclei, and iron nuclei. Give the result as column density $\left[\mathrm{g} / \mathrm{cm}^{2}\right]$.

